Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-0878
    Schlagwort(e): Key words Enteric innervation ; Immunohistochemistry ; Nitric oxide synthase ; Galanin ; Striated muscle ; Esophagus ; Rat (Wistar)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract The relationship between nitric oxide synthase (NOS)- and galanin-immunoreactive nerve terminals and the origin of NOS-immunoreactive nerve terminals on the motor endplates in the striated muscles of the rat esophagus was investigated. Double immunohistochemical staining revealed a dual innervation of motor endplates by calcitonin gene-related peptide (CGRP)-immunoreactive axons and by axons that were immunoreactive for both NOS and galanin. On average, 91% of NOS terminals were galanin immunoreactive. NOS-immunoreactive fibers were revealed at 67% of endplates, identified by the presence of CGRP terminals. The left vagus and superior laryngeal nerve were cut and 15 days allowed for terminals to degenerate. This caused a significant loss of CGRP fibers, but did not affect the density of innervation of the striated muscle by NOS-immunoreactive fibers. Thus the NOS/galanin fibers are deduced to originate from ganglia in the esophageal wall. This is supported by our observation of numerous NOS-immunoreactive nerve cell bodies in the myenteric ganglia of the esophagus, 74% of which were galanin immunoreactive. There were no CGRP-immunoreactive nerve cell bodies in the wall of the esophagus.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0878
    Schlagwort(e): Key words: Nitric oxide synthase ; Vasoactive intestinal peptide ; Immunohistochemistry ; Electron microscopy ; Submucous plexus ; Guinea-pig
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract. In the submucous plexus of the guinea-pig ileum, previous light-microscopic studies have revealed that vasoactive intestinal peptide (VIP)-immunoreactive and nitric oxide synthase (NOS)-immunoreactive terminals are found predominantly in association with VIP-immunoreactive nerve cell bodies. In this study, double-label immunohistochemistry at the light-microscopic level demonstrated co-localization of NOS-immunoreactivity and VIP-immunoreactivity in axon terminals in submucous ganglia. About 90% of nerve fibres with NOS-immunoreactivity or VIP-immunoreactivity were immunoreactive for both antigens; only about 10% of labelled varicosities contained only NOS-immunoreactivity or VIP-immunoreactivity. The VIP/NOS varicosities were more often seen in the central parts of the ganglia, close to the VIP-immunoreactive cell bodies. Ultrastructural immunocytochemistry with antibodies to VIP was used to determine if NOS/VIP terminals synapse exclusively with VIP-immunoreactive nerve cell bodies. We examined the targets of VIP-immunoreactive boutons in two submucous ganglia from different animals. Serial ultrathin sections were taken through the ganglia after they had been processed for VIP immunocytochemistry. For each cell body, the number of VIP inputs (synapses and close contacts) was determined. The number of VIP-immunoreactive synapses received by the cell bodies of submucous neurons varied from 0–4 and the number of VIP-immunoreactive close contacts varied from 3–10. There was no significant difference between VIP-immunoreactive nerve cell bodies and non-VIP nerve cell bodies in the number of VIP-immunoreactive synapses and close contacts they received. Thus, the implication from light microscopy that NOS/VIP terminals end predominantly on VIP nerve cells was not vindicated by electron microscopy.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-0878
    Schlagwort(e): Nitric oxide synthase ; Vasoactive intestinal peptide ; Immunohistochemistry ; Electron microscopy ; Submucous plexus ; Guinea-pig
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract In the submucous plexus of the guinea-pig ileum, previous light-microscopic studies have revealed that vasoactive intestinal peptide (VIP)-immunoreactive and nitric oxide synthase (NOS)-immunoreactive terminals are found predominantly in association with VIP-immunoreactive nerve cell bodies. In this study, double-label immunohistochemistry at the light-microscopic level demonstrated co-localization of NOS-immunoreactivity and VIP-immunoreactivity in axon terminals in submucous ganglia. About 90% of nerve fibres with NOS-immunoreactivity or VIP-immunoreactivity were immunoreactive for both antigens; only about 10% of labelled varicosities contained only NOS-immunoreactivity or VIP-immunoreactivity. The VIP/NOS varicosities were more often seen in the central parts of the ganglia, close to the VIP-immunoreactive cell bodies. Ultrastructural immunocytochemistry with antibodies to VIP was used to determine if NOS/VIP terminals synapse exclusively with VIP-immunoreactive nerve cell bodies. We examined the targets of VIP-immunoreactive boutons in two submucous ganglia from different animals. Serial ultrathin sections were taken through the ganglia after they had been processed for VIP immunocytochemistry. For each cell body, the number of VIP inputs (synapses and close contacts) was determined. The number of VIP-immunoreactive synapses received by the cell bodies of submucous neurons varied from 0–4 and the number of VIP-immunoreactive close contacts varied from 3–10. There was no significant difference between VIP-immunoreactive nerve cell bodies and non-VIP nerve cell bodies in the number of VIP-immunoreactive synapses and close contacts they received. Thus, the implication from light microscopy that NOS/VIP terminals end predominantly on VIP nerve cells was not vindicated by electron microscopy.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...