Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Anterior thalamus ; Laterodorsal tegmental nucleus ; Pedunculopontine nucleus ; Cholinergic neurons Double-labelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Retrograde transport of horseradish peroxidase (HRP) was combined with choline acetyltransferase (ChAT) immunohistochemistry to study cholinergic projections to the anterior thalamic nuclei in the rat. Small iontophoretic injections of HRP placed into different subdivisions of the anterior thalamic nuclear complex resulted in distinct patterns of retrograde labelling in two major cholinergic cell groups of the mesopontine tegmentum, the laterodorsal tegmental nucleus (LDTg), in which a majority of the labelled cells was located, and the pedunculopontine tegmental nucleus (PPT). After injections into the posterior subdivision of the anteroventral thalamic nucleus (AVp), double-labelled neurons were present predominantly in the ipsilateral LDTg while a smaller number was found in the PPT. In the ipsilateral LDTg, 60–70% of ChAT-positive neurons were HRP-labelled, and 90–95% of the HRP-labelled neurons were ChAT-positive. In the contralateral LDTg, 30–40% of ChAT-positive neurons were HRP-labelled. After injections in the medial subdivision of the anteroventral thalamic nucleus (AVm), the pattern of labelling in LDTg was similar to that detected after injections in the AVp. The number of double-labelled neurons in the LDTg and PPT was much lower after injections into AVm than after injections into AVp. When injections were confined to the anterodorsal thalamic nucleus (AD), no HRP-labelled cells were present in the LDTg or PPT. These results show that the LDTg and PPT are the sources of the cholinergic input to the rat anterior thalamus. The major projection from LDTg and PPT is to the AVp, whereas there is a lighter cholinergic projection to the AVm. The AD does not receive a projection from cholinergic cells in the mesopontine tegmentum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words: Thalamus ; Intercellular junctions ; Synapse ; Synaptic glomeruli ; Agranular endoplasmic reticulum ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Filamentous contacts are non-synaptic interneuronal junctions characteristic of thalamic relay nuclei. Symmetrical filamentous contacts occur between two dendrites, two somata or a dendrite and a soma; asymmetrical filamentous contacts occur between axon terminals and dendrites, or occasionally somata, chiefly between the large specific afferent axon terminals of the synaptic glomeruli and the shafts of relay cell dendrites. Both are arranged as extensive net-like (reticular) specializations. The strands of the network enclose fenestrae of variable shape and size and, in perpendicular thin sections, appear as stretches of slightly widened intercellular space containing an electron-dense material and bounded by plasma membranes, the cytoplasmic surfaces of which are coated by electron-dense material into which microfilaments appear to insert. The lamina of cytoplasmic material in dendrites and somata is thicker than that in axon terminals and contains distinct electron-dense sub-units. Regular synaptic junctions may be situated like islands within the territory of an asymmetrical filamentous contact, and small spot-like close membrane appositions resembling gap junctions are occasionally seen in the fenestrae adjacent to the strands of both varieties of contact. Bundles of neurofilaments running in different directions, but in a plane parallel to the plasma membrane, are prominent on either side of the symmetrical filamentous contact and on the dendritic side of the asymmetrical variety. The agranular reticulum also exhibits differences between the contact types. Because of their highly specialized ultrastructure and specific distribution, filamentous contacts probably do not serve a purely adhesive function. Their possible role in the establishment and maintenance of orderly connections between cells is discussed but not favoured. Filamentous contacts probably mediate some form of intercellular communication, possibly involving gap junctions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...