Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • Phosphorus requirements  (2)
  • improved pastures  (1)
  • 1
    ISSN: 1573-0867
    Keywords: acid low-P soils ; improved pastures ; P budget ; P cycling ; soil P fertility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract On acid low-phosphorus (P) Colombian Oxisols, improved pastures with acid-soil-tolerant grass and legume varieties have increased beef production by a factor of 10 to 15 with only modest P fertilizer inputs. This indicates that the efficiency of P fertilization could be greater than is commonly expected on such strongly P-sorbing soils. To understand the effect of improved pastures on P cycling and availability, we estimated P budgets, and characterized soil P by sequential fractionation, isotopic exchange and biological activity measurements on soil samples from unfertilized native savanna, and fertilized improved grass-only (Brachiaria decumbens cv. Basilisk) and grass-legume (B. decumbens + Pueraria phaseoloides, Kudzu) pastures established in 1978 on a medium-textured isohyperthermic, tropeptic haplustox. Comparison of calculated P budgets, based on inputs and exports, with total soil P contents showed that fertilization, as part of the improved pasture management, had resulted in a measurable increase of total P in the surface 0–20 cm soil layer of nearly 30 mg kg-1 or about 20% over the savanna level. Sequential soil P fractionation of different seasonal samplings indicated that grass-legume maintained higher organic and available inorganic P levels with less temporal variation than the two other types. The linkage of organic P and available P was also reflected in soil biological activity. Estimates of P in microbial biomass and phosphatase activity were significantly higher in grass-legume than grass-only and savanna. The improvement in soil P availability, as measured by solution P concentration, P sorption and exchangeable P, was much greater in grass-legume than in grass-only. With comparable fertilizer inputs and greater product exports, improved P availability in grass-legume cannot be due to differences in budgets but can be attributed to changes in the overall biological activity in the soil-plant system caused by the presence of legumes in the vegetation cover. Total C, organic P content and macrofaunal activity were all significantly higher in grass-legume soils. Greater turnover of organic litter in grass-legume may provide for steadier organic P inputs and, therefore, higher P cycling and availability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 303-308 
    ISSN: 1432-0789
    Keywords: Key words VA mycorrhizae ; Glomus intraradices ; Barley ; Soybean ; Phosphorus requirements ; Mycorrhizal dependency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An experiment was conducted under greenhouse conditions to evaluate the effects of vesicular arbuscular mycorrhizal (VAM) fungi on the external P requirements of barley and soybeans. The plants were grown in pots containing a P-deficient soil. A range of 10 P levels was obtained by adding 0, 20, 30, 40, 50, 60, 70, 110, 160, or 310 mg P kg–1 as NaH2PO4·2H2O. Half of the pots were inoculated with the VAM fungus Glomus intraradices. The P concentration in the soil solution was determined using an adsorption isotherm and plotted against the relative yield. Barley did not respond to mycorrhizal inoculation and we concluded that P nutrition was not the limiting factor on the growth of this low-mycotrophic plant. In contrast, mycorrhizal inoculation stimulated the growth of soybeans. The external P requirements were 0.110 μg ml–1 for mycorrhizal and 0.148 μg ml–1 for non-mycorrhizal soybeans to obtain 80% of the maximum yield. In terms of P fertilization this corresponds to a saving of 222 kg P2O5 ha–1. The mycorrhizal dependency of the soybean was highly correlated with the P concentration in the soil solution and it is proposed that both values should be displayed together.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 21 (1996), S. 303-308 
    ISSN: 1432-0789
    Keywords: VA mycorrhizae ; Glomus intraradices ; Barley ; Soybean ; Phosphorus requirements ; Mycorrhizal dependency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An experiment was conducted under greenhouse conditions to evaluate the effects of vesicular arbuscular mycorrhizal (VAM) fungi on the external P requirements of barley and soybeans. The plants were grown in pots containing a P-deficient soil. A range of 10 P levels was obtained by adding 0, 20, 30, 40, 50, 60, 70, 110, 160, or 310 mg P kg-1 as NaH2PO4 2H2O. Half of the pots were inoculated with the VAM fungus Glomus intraradices. The P concentration in the soil solution was determined using an adsorption isotherm and plotted against the relative yield. Barley did not respond to mycorrhizal inoculation and we concluded that P nutrition was not the limiting factor on the growth of this lowmycotrophic plant. In contrast, mycorrhizal inoculation stimulated the growth of soybeans. The external P requirements were 0.110 μg ml-1 for mycorrhizal and 0.148 μg ml-1 for non-mycorrhizal soybeans to obtain 80% of the maximum yield. In terms of P fertilization this corresponds to a saving of 222 kg P2O5 ha-1. The mycorrhizal dependency of the soybean was highly correlated with the P concentration in the soil solution and it is proposed that both values should be displayed together.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...