Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8477
    Keywords: co-evolution ; exploitative mutualism ; anti-predator behaviour ; co-evolutionarily stable state ; community structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Antipredator strategies employed by prey may be specific (effective against only one type of predator) or non-specific (effective against all predators). To examine the effects of the specificity of antipredator behaviour on biodiversity and community complexity, we analyse mathematical models including both evolutionary and population dynamics of a system including multiple prey species and multiple predator species. The models assume that all predator species change in their prey choice and all prey species have evolutionary change in their antipredator effort in evolution. The traits of each species change in an adaptive manner, whose rate is proportional to the slope of their fitness function. We calculate community complexity, resource-overlap between predators, an index of biodiversity and other properties of the coevolutionarily stable community for two cases: (1) all prey species have non-specific antipredator behaviour and (2) all prey species have predator-specific defence. Predator-specificity in defence increases community complexity, resource-overlap between predators, the total abundance of predators and the ratio of predator to prey abundance. Specific defence also decreases the number of isolated subwebs within the entire foodweb.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 11 (1997), S. 673-686 
    ISSN: 1573-8477
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The evolutionary responses of predators to prey and of prey to predators are analysed using models for the dynamics of a quantitative trait that determines the capture rate of prey by an average searching predator. Unlike previous investigations, the analysis centres on models and/or parameter values for which the two-species equilibrium is locally unstable. The instability in some models is driven by the predator's non-linear functional response to prey; in other models, the cycles are a direct consequence of evolutionary response to selection acting on the trait. When the values of predator and prey traits combine multiplicatively to determine the capture rate, the predator's trait shows only a transient response to changes in the prey's trait in stable systems. However, when the population densities exhibit sustained oscillations, predators often evolve an increased long-term mean capture rate in response to an increased prey escape ability. Under the multiplicative model, prey in stable systems always evolve increased escape ability in response to an increased predator capture a
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 11 (1997), S. 1-20 
    ISSN: 1573-8477
    Keywords: coevolution ; fitness minimization ; mathematical model ; predation ; predator–prey interaction ; population cycles ; quantitative traits ; stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We analyse dynamic models of the coevolution of continuous traits that determine the capture rate of a prey species by a predator. The goal of the analysis is to determine conditions when the coevolutionary dynamics will be unstable and will generate population cycles. We use a simplified model of the evolutionary dynamics of quantitative traits in which the rate of change of the mean trait value is proportional to the rate of increase of individual fitness with trait value. Traits that increase ability in the predatory interaction are assumed to have negative effects on another component of fitness. We concentrate on the role of equilibrial fitness minima in producing cycles. In this case, the mean trait of a rapidly evolving species minimizes its fitness and it is ‘chased’ around this equilibrium by adaptive evolution in the other species. Such cases appear to be most likely if the capture rate of prey by predators is maximal when predator and prey phenotypes match each other. They are possible, but less likely when traits in each species determine a one-dimensional axis of ability related to the interaction. Population dynamics often increase the range of parameter values for which cycles occur, relative to purely evolutionary models, although strong prey self-regulation may stabilize an evolutionarily unstable subsystem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 10 (1996), S. 167-186 
    ISSN: 1573-8477
    Keywords: coevolution ; fitness minimization ; mathematical model ; predation ; predator—prey interaction ; population cycles ; quantitative traits ; stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We analyse dynamic models of the coevolution of continuous traits that determine the capture rate of a prey species by a predator. The goal of the analysis is to determine conditions when the coevolutionary dynamics will be unstable and will generate population cycles. We use a simplified model of the evolutionary dynamics of quantitative traits in which the rate of change of the mean trait value is proportional to the rate of increase of individual fitness with trait value. Traits that increase ability in the predatory interaction are assumed to have negative effects on another component of fitness. We concentrate on the role of equilibrial fitness minima in producing cycles. In this case, the mean trait of a rapidly evolving species minimizes its fitness and it is ‘chased’ around this equilibrium by adaptive evolution in the other species. Such cases appear to be most likely if the capture rate of prey by predators is maximal when predator and prey phenotypes match each other. They are possible, but less likely when traits in each species determine a one-dimensional axis of ability related to the interaction. Population dynamics often increase the range of parameter values for which cycles occur, relative to purely evolutionary models, although strong prey self-regulation may stabilize an evolutionarily unstable subsystem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...