Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 3934-3940 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Equilibrium and stability analyses have identified a class of tokamak configurations with conventional safety factor profiles (q0∼qmin(approximately-greater-than)1) at moderately high li(li∼1.0), and high normalized β(βN∼3.5–4.0), that are stable to the ideal n=1 kink without the requirement of wall stabilization. In contrast to previously identified high li, high βN equilibria, these configurations have high bootstrap current fractions (fBS∼50%–70%); they require only modest central current drive for maintaining steady state and are therefore compatible with advanced tokamak (AT) operation. Strong plasma shaping is crucial for achieving the high β and high bootstrap fraction simultaneously. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 973-978 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A tokamak equilibrium model, local to a flux surface, is introduced which is completely described in terms of nine parameters including aspect ratio, elongation, triangularity, and safety factor. By allowing controlled variation of each of these nine parameters, the model is particularly suitable for localized stability studies such as those carried out using the ballooning mode representation of the gyrokinetic equations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The maximum normalized beta achieved in long-pulse tokamak discharges at low collisionality falls significantly below both that observed in short pulse discharges and that predicted by the ideal MHD theory. Recent long-pulse experiments, in particular those simulating the International Thermonuclear Experimental Reactor (ITER) [M. Rosenbluth et al., Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 517] scenarios with low collisionality νe*, are often limited by low-m/n nonideal magnetohydrodynamic (MHD) modes. The effect of saturated MHD modes is a reduction of the confinement time by 10%–20%, depending on the island size and location, and can lead to a disruption. Recent theories on neoclassical destabilization of tearing modes, including the effects of a perturbed helical bootstrap current, are successful in explaining the qualitative behavior of the resistive modes and recent results are consistent with the size of the saturated islands. Also, a strong correlation is observed between the onset of these low-m/n modes with sawteeth, edge localized modes (ELM), or fishbone events, consistent with the seed island required by the theory. We will focus on a quantitative comparison between both the conventional resistive and neoclassical theories, and the experimental results of several machines, which have all observed these low-m/n nonideal modes. This enables us to single out the key issues in projecting the long-pulse beta limits of ITER-size tokamaks and also to discuss possible plasma control methods that can increase the soft β limit, decrease the seed perturbations, and/or diminish the effects on confinement. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Detailed analysis of recent high beta discharges in the DIII-D [Plasma Physics Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak demonstrates that the resistive vacuum vessel can provide stabilization of low n magnetohydrodynamic (MHD) modes. The experimental beta values reaching up to βT=12.6% are more than 30% larger than the maximum stable beta calculated with no wall stabilization. Plasma rotation is essential for stabilization. When the plasma rotation slows sufficiently, unstable modes with the characteristics of the predicted "resistive wall'' mode are observed. Through slowing of the plasma rotation between the q=2 and q=3 surfaces with the application of a nonaxisymmetric field, it has been determined that the rotation at the outer rational surfaces is most important, and that the critical rotation frequency is of the order of Ω/2π=1 kHz. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total noninductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [fφ(0)∼30–60 kHz] and ion temperature [Ti(0)∼15–22 keV] profiles are observed. In high-power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H≡τE/τITER-89P∼2.5 with an L-mode edge, and H∼3.3 in an edge localized mode (ELM)-free H mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in the L mode leads to high disruptivity with βN≡βT/(I/aB)≤2.3, while broader pressure profiles in the H mode gives low disruptivity with βN≤4.2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The confinement and the stability properties of the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high-performance discharges are evaluated in terms of rotational and magnetic shear, with an emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped-electron-ηi mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the ηi mode suggests that the large core E×B flow shear can stabilize this mode and broaden the region of reduced core transport. Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low βN≤2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges, which has a broad region of weak or slightly negative magnetic shear (WNS), is described. The WNS discharges have broader pressure profiles and higher β values than the NCS discharges, together with high confinement and high fusion reactivity. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 183-191 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Kelvin–Helmholtz destabilizing effect of shear in toroidal rotation on ideal magnetohydrodynamic localized interchange is studied in a tokamak with a general geometry. The method of maximizing the growth rate given by Frieman and Rotenberg is utilized. An explicit stability criterion is given for a slowly rotating tokamak with a non-negligible shearing rate in its rotation profile. It is found that rotation shear can weaken the stabilizing effect of the magnetic field shear and also allow the coupling of the sound wave to the shear Alfvén wave which destabilizes the plasma. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 1495-1499 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The validity of a series expansion proposed previously [T. H. Jensen and M. S. Chu, Phys. Fluids 27, 2881 (1984)] for describing general Taylor configurations of magnetized plasmas has been reexamined because an apparent paradox was realized. From analyses of simple cases which can be dealt with mostly analytically, it is concluded that the paradox is a Gibbs phenomenon, and that the series expansion is valid. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] tokamak plasmas with an internal transport barrier (ITB), the comparison of gyrokinetic linear stability (GKS) predictions with experiments in both low and strong negative magnetic shear plasmas provide improved understanding for electron thermal transport within the plasma. Within a limited region just inside the ITB, the electron temperature gradient (ETG) modes appear to control the electron temperature gradient and, consequently, the electron thermal transport. The increase in the electron temperaturegradient with more strongly negative magnetic shear is consistent with the increase in the ETG mode marginal gradient. Closer to the magnetic axis the Te profile flattens and the ETG modes are predicted to be stable. With additional core electron heating, FIR scattering measurements near the axis show the presence of high k fluctuations (12 cm−1), rotating in the electron diamagnetic drift direction. This turbulence could impact electron transport and possibly also ion transport. Thermal diffusivities for electrons, and to a lesser degree ions, increase. The ETG mode can exist at this wave number, but it is computed to be robustly stable near the axis. Consequently, in the plasmas we have examined, calculations of drift wave linear stability do not explain the observed transport near the axis in plasmas with or without additional electron heating, and there are probably other processes controling transport in this region. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One promising approach to maintaining stability of high beta tokamak plasmas is the use of a conducting wall near the plasma to stabilize low-n ideal magnetohydrodynamic instabilities. However, with a resistive wall, either plasma rotation or active feedback control is required to stabilize the more slowly growing resistive wall modes (RWMs). Previous experiments have demonstrated that plasmas with a nearby conducting wall can remain stable to the n=1 ideal external kink above the beta limit predicted with the wall at infinity. Recently, extension of the wall stabilized lifetime τL to more than 30 times the resistive wall time constant τw and detailed, reproducible observation of the n=1 RWM have been possible in DIII-D [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159] plasmas above the no-wall beta limit. The DIII-D measurements confirm characteristics common to several RWM theories. The mode is destabilized as the plasma rotation at the q=3 surface decreases below a critical frequency of 1–7 kHz (∼1% of the toroidal Alfvén frequency). The measured mode growth times of 2–8 ms agree with measurements and numerical calculations of the dominant DIII-D vessel eigenmode time constant τw. From its onset, the RWM has little or no toroidal rotation (ωmode≤τw−1(very-much-less-than)ωplasma), and rapidly reduces the plasma rotation to zero. These slowly growing RWMs can in principle be destabilized using external coils controlled by a feedback loop. In this paper, the encouraging results from the first open loop experimental tests of active control of the RWM, conducted in DIII-D, are reported. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...