Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 1883-1885 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The VAX-based data-acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second-generation system that evolved from a PDP-11/60-based system used during the initial phase of facility testing. The VAX-based software represents a layered implementation that provides integrated access to all of the data sources within the system, decoupling end-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring, and disposing data and control parameters for access from the data retrieval software. This paper describes the software architecture and the functionality incorporated into the various layers of the data system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 57 (1986), S. 1901-1903 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The Oak Ridge National Laboratory is currently developing a deuterium pellet injector for installation on the tokamak fusion test reactor (TFTR). This paper describes the design and development of a stand-alone data acquisition and control system for that device. Major elements of the hardware are an Allen–Bradley PLC 2/30 programmable logic controller, a MicroVAX-II computer using the VMS operating system, CAMAC data acquisition and communication equipment, and special-purpose controllers for temperature and for the sequencing of pellet firing valves. The PLC performs all actual control actions and acquires data pertinent to those actions. The MicroVAX receives the data acquired by the PLC, displays it for the operator, prompts for and processes requests for action from the operator, and informs the PLC of those requests. The primary purpose of this paper is to describe the software operating in the MicroVAX, including the system architecture, major tasks, and ancillary and background tasks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1765-1767 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The data system for the advanced toroidal facility (ATF) is a logical extension of the system used for the Impurity Studies Experiment ISX-B. Based on the ISX-B concepts and hardware, it extends them to provide support for long-pulse or steady-state operation of ATF. The system is now network based rather than shared memory based and can dynamically add or remove processors. The hardware consists of a pair of VAX 8700 CPUs and an assortment of MicroVAX front ends. This hardware acquires all data, generates all control waveforms, and provides trending and logging services for the safety interlock and control systems. These systems are based on programmable logic controllers (PLCs) which are independent of the data system. The software consists of three major components: a master scheduling and monitoring system (SAMS) that provides synchronizing services and allocates files and memory; a signal-based data and file management package (DMG) that provides data access services; and the ORNL CAMAC driver package. All diagnostics are supported by data acquisition and analysis software (either generic or specialized) that is based on and shared by these services.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1783-1785 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory, is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This article describes the DMG system and the interfaces to it.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: © American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The capability to inject deuterium pellets from the magnetic high field side (HFS) has been added to the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. It is observed that pellets injected from the HFS lead to deeper mass deposition than identical pellets injected from the outside midplane, in spite of a factor of 4 lower pellet speed. HFS injected pellets have been used to generate peaked density profile plasmas [peaking factor (ne(0)/〈ne〉) in excess of 3] that develop internal transport barriers when centrally heated with neutral beam injection. The transport barriers are formed in conditions where Te∼Ti and q(0) is above unity. The peaked density profiles, characteristic of the internal transport barrier, persist for several energy confinement times. The pellets are also used to investigate transport barrier physics and modify plasma edge conditions. Transitions from L- to H-mode have been triggered by pellets, effectively lowering the H-mode threshold power by 2.4 MW. Pellets injected into H-mode plasmas are found to trigger edge localized modes (ELMs). ELMs triggered from the low field side (LFS) outside midplane injected pellets are of significantly longer duration than from HFS injected pellets. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1968-1975 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: During pellet injection in tokamaks, a rapid movement of pellet ablation substance towards the low-field or outward major radius R direction is observed, favoring pellet injection from the high-field side in order to promote deeper fuel penetration. The motion has been attributed to a vertical curvature and ∇B drift current induced inside the ionized ablated material by the 1/R toroidal field variation. The uncompensated vertical drift current inside the weakly diamagnetic (β〈0.1) ablation cloud will cause charge separation at the boundary. The resulting electrostatic field induces the E×B drift to the large-R side of the torus. The calculated fuel penetration depth is consistent with inside launched pellet experiments on the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The dependence of the penetration depth with plasma parameters suggests that low velocity inside launched pellets may provide a unique solution to the refueling problem in larger and hotter machines of the future. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The amplitude and frequency of modes driven in the edge region of tokamak high mode (H-mode) discharges [type I edge-localized modes (ELMs)] are shown to depend on the discharge shape. The measured pressure gradient threshold for instability and its scaling with discharge shape are compared with predictions from ideal magnetohydrodynamic theory for low toroidal mode number (n) instabilities driven by pressure gradient and current density and good agreement is found. Reductions in mode amplitude are observed in discharge shapes with either high squareness or low triangularity where the stability threshold in the edge pressure gradient is predicted to be reduced and the most unstable mode is expected to have higher values of n. The importance of access to the ballooning mode second stability regime is demonstrated through the changes in the ELM character that occur when second regime access is not available. An edge stability model is presented that predicts that there is a threshold value of n for second regime access and that the most unstable mode has n near this threshold. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection taking place when the heating power exceeds a threshold value of about 9 MW, contrasting to co-NBI injection, where Pthreshold〈2.5 MW. Expansion of the ITB is enhanced compared to similar co-injected discharges. Both differences are believed to arise from modification of the E×B shear dynamics when the sign of the rotation contribution is reversed. Sustainment of an AT regime with βNH89=9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode (edge localized, high confinement mode) edge and an ITB, and exhibiting ion thermal transport down to 2–3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency magnetohydrodynamic (MHD) activity is identified as the probable cause. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] tokamak plasmas with an internal transport barrier (ITB), the comparison of gyrokinetic linear stability (GKS) predictions with experiments in both low and strong negative magnetic shear plasmas provide improved understanding for electron thermal transport within the plasma. Within a limited region just inside the ITB, the electron temperature gradient (ETG) modes appear to control the electron temperature gradient and, consequently, the electron thermal transport. The increase in the electron temperaturegradient with more strongly negative magnetic shear is consistent with the increase in the ETG mode marginal gradient. Closer to the magnetic axis the Te profile flattens and the ETG modes are predicted to be stable. With additional core electron heating, FIR scattering measurements near the axis show the presence of high k fluctuations (12 cm−1), rotating in the electron diamagnetic drift direction. This turbulence could impact electron transport and possibly also ion transport. Thermal diffusivities for electrons, and to a lesser degree ions, increase. The ETG mode can exist at this wave number, but it is computed to be robustly stable near the axis. Consequently, in the plasmas we have examined, calculations of drift wave linear stability do not explain the observed transport near the axis in plasmas with or without additional electron heating, and there are probably other processes controling transport in this region. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...