Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Contact dermatitis 35 (1996), S. 0 
    ISSN: 1600-0536
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 61 (1999), S. 382-395 
    ISSN: 1432-0819
    Keywords: Key words GOES ; Thermal radiance ; Effusive eruption ; Monitoring ; Kīlauea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  GOES provides thermal data for all of the Hawaiian volcanoes once every 15 min. We show how volcanic radiance time series produced from this data stream can be used as a simple measure of effusive activity. Two types of radiance trends in these time series can be used to monitor effusive activity: (a) Gradual variations in radiance reveal steady flow-field extension and tube development. (b) Discrete spikes correlate with short bursts of activity, such as lava fountaining or lava-lake overflows. We are confident that any effusive event covering more than 10,000 m2 of ground in less than 60 min will be unambiguously detectable using this approach. We demonstrate this capability using GOES, video camera and ground-based observational data for the current eruption of Kīlauea volcano (Hawai'i). A GOES radiance time series was constructed from 3987 images between 19 June and 12 August 1997. This time series displayed 24 radiance spikes elevated more than two standard deviations above the mean; 19 of these are correlated with video-recorded short-burst effusive events. Less ambiguous events are interpreted, assessed and related to specific volcanic events by simultaneous use of permanently recording video camera data and ground-observer reports. The GOES radiance time series are automatically processed on data reception and made available in near-real-time, so such time series can contribute to three main monitoring functions: (a) automatically alerting major effusive events; (b) event confirmation and assessment; and (c) establishing effusive event chronology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...