Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Entorhinal cortex lesion of adult rats induces glial activation and proliferation in the deafferented dentate molecular layer. Double-labelling immunocytochemistry for the astrocyte-specific antigen glial fibrillary acidic protein or the microglial cell marker Griffonia simplicifolia isolectin B4 with bromodeoxyuridine detection revealed that microglia counts and the proliferation rate in the ipsilateral dentate gyrus reached a maximum in the molecular layer at 3 days post-lesion (dpl) and returned to control levels by 30 dpl. Astrocyte counts in the ipsilateral dentate gyrus peaked at 30 dpl, with maximum proliferation at 7 dpl. At 100 dpl the astrocyte count had reverted to control levels. Glial proliferation was not restricted to the ipsilateral molecular layer but also occurred to some degree in the granule cell layer and the contralateral dentate gyrus. Thus entorhinal cortex lesion induces a rapid microglia reaction and long-lasting astrocyte activation in the deafferented termination zone of the perforant path. We conclude that glial proliferation after entorhinal cortex lesion follows a complex temporal and spatial pattern that coincides with processes of neuronal and axonal reorganization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Microglial cells with their characteristic ramified morphology are exclusively found in healthy CNS tissue, whereas various pathologies are associated with the occurrence of amoeboid, macrophage-like cells. It is still a matter of discussion whether amoeboid cells are blood-derived macrophages, or whether a characteristic change in morphology, reflecting activation of previously ramified microglia, takes place. Cells in dissociated microglia culture obtained from healthy rat brains, inevitably developing this amoeboid morphology, were labelled with a fluorescent dye and transferred onto organotypic hippocampal slice cultures. Prelabelled cells with amoeboid morphology invaded these slice cultures and had, after 9 days in vitro, gradually transformed into highly ramified cells. Our findings strengthen the hypothesis that the observed amoeboid and ramified cells belong to a single population of microglia, appearing with different morphologies depending on the presence of stimuli provided by the CNS microenvironment. Microglial cells obviously appear in different shapes and can switch from immunologically resting to activated modes and vice versa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The aim of this study was to analyse microglial reactions to excitotoxic N-methyl-d-aspartic acid (NMDA)-induced degeneration of rat dentate and hippocampal neurons in vitro. We used a migration model combining the techniques of microglial single cell culture and organotypic hippocampal slice culture (OHSC). Site-specific oxidative damage in OHSCs was induced by pretreatment with 50 μm NMDA. Neuronal injury determined by propidium iodide (PI) uptake included the hippocampal cell layers of the dentate gyrus (DG) and the cornu ammonis (CA). Fluorescence-prelabelled microglial cells with ameboid morphology were transferred onto the OHSC and migrated predominantly to the prelesioned cell layers of DG and CA when compared with unlesioned areas of the OHSC. In NMDA pretreated slices, microglial cells clustered around degenerating granule cells in the DG and pyramidal cells in the CA. This effect was significantly inhibited in unlesioned slice cultures and in NMDA-exposed cultures that were pretreated with the NMDA-antagonist MK-801. Our observations suggest that microglia – attracted by the presence of stimuli provided by NMDA-induced neuronal death – migrate specifically towards these lesioned neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Morphological, immunophenotypical and electrophysiological properties were investigated in isolated cultured murine microglia before and after exposure to astrocyte-conditioned medium (ACM). Following application of ACM, microglial cells underwent a dramatic shape transformation from an amoeboid appearance to a ramified morphology. In parallel to morphological changes, a downregulation of macrophage surface antigens was observed in microglia exposed to ACM. Staining intensities for major histocompatibility complex (MHC) class II molecules and for the adhesion molecules leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased in ramified microglia 5 days after exposure to ACM. In microglial cells treated daily with ACM over a period of 5 days, the smallest staining intensities for all surface antigens as well as the smallest ramification index as a measure for the highest degree of ramification were determined. In addition, upregulation of delayed rectifier K +  currents was observed in microglia exposed to ACM for 1 day or treated daily with ACM for 5 days. In contrast, untreated amoeboid microglia or ramified microglia analysed 5 days after exposure to ACM did not express delayed rectifier K +  currents. Analyses of the resting membrane potential and expression levels and properties of inward rectifier K +  currents did not reveal any differences between untreated and ACM-treated microglia. It is suggested that electrophysiological properties of microglia do not strongly correlate with the morphology or the immunophenotype of microglial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...