Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Acidosis ; Seizures ; Brain slices ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Lowering [Mg2+]o induces epileptiform bursting in hippocampus and entorhinal cortex (EC), presumably by activation of N-methyl-d-aspartate (NMDA) receptors. Since increasing [H+]o has been shown to reduce NMDA receptor activation, we hypothesized that this could contribute to anticonvulsant actions of acidic pH. To test this, we studied the effects of raising extracellular PCO2 (20.6%, pH = 6.7) or lowering extracellular pH (6.7 or 6.2) on low-Mg2+-induced epileptiform discharges. Lowering the pH to 6.7 by either means increased the interval between seizure-like events (SLEs), decreased the maximal amplitude of SLEs, and, if the site of seizure generation was at a distance from the recording site, acidification slowed the rate of seizure propagation. In contrast, the duration of SLEs was unaffected by acidic pH or high PCO2. Raising PCO2 or lowering pH to 6.7 also blocked early (8–10 min) but not late (〉 20 min) phases of status-like discharges. All effects of the extracellular pH changes were fully reversible. Further lowering of extracellular pH to 6.2 completely and reversibly blocked both SLEs and status-like discharges. Our data show that the effects of high PCO2 and low pH on seizures in the EC in vitro may be dose-dependent and consistent with induction by proton blockade of NMDA receptors. Thus, blockade of NMDA currents by protons may be an important component of the anticonvulsant action of extracellular acidosis. The results also suggest that acidosis may be a desirable property for new antiepileptic treatments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The long-term structural and functional consequences of transient forebrain ischaemia were studied with morphological, immunohistochemical and in vitro electrophysiological techniques in the primary somatosensory cortex of Wistar rats. After survival times of 10–17 months postischaemia, neocortical slices obtained from ischaemic animals were characterized by a pronounced neuronal hyperexcitability in comparison with untreated age-matched controls. Extra-and intracellular recordings in supragranular layers revealed all-or-none long-latency recurrent responses to orthodromic synaptic stimulation of the afferent pathway. These responses were characterized by durations up to 1.7 s, by multiple components and by repetitive synaptic burst discharges. The reversible blockade of this late activity by dl-aminophosphonovaleric acid (APV) suggested that this activity was mediated by Kmethyl-l-aspartate (NMDA) receptors. The peak conductance of inhibitory postsynaptic potentials was significantly smaller in neurons recorded in neocortical slices obtained from ischaemic animals than those from the controls. However, the average number of parvalbumin (PV)-labelled neurons per mm3, indicative of a subpopulation of GABAergic interneurons, and the average number and length of dendritic processes arising from PV-containing cells was not significantly different between ischaemic and control cortex. The prominent dysfunction of the inhibitory system in ischaemic animals occurred without obvious structural alterations in PV-labelled cells, indicating that this subpopulation of GABAergic interneurons is not principally affected by ischaemia. Our data suggest a long-term down-regulation of inhibitory function and a concurrent NMDA receptor-mediated hyperexcitability in ischaemic neocortex. These alterations may result from structural and/or functional properties of inhibitory non-PV-positive neurons or permanent functional modifications on the subcellular molecular level, i.e. alterations in the phosphorylation status of GABA and/or NMDA receptors. The net result of these long-term changes is an imbalance between the excitatory and inhibitory systems in the ischaemic cortex with the subsequent expression and manifestation of intracortical hyperexcitability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20–80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5–15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 16 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Several lines of evidence indicate a substantial contribution of kainate receptors to temporal lobe seizures. The activation of kainate receptors located on hippocampal inhibitory interneurons was shown to reduce GABA release. A reduced GABA release secondary to kainate receptor activation could contribute to an enhanced seizure susceptibility. As the dentate gyrus serves a pivotal gating function in the spread of limbic seizures, we tested the role of kainate receptors in the regulation of GABA release in the dentate gyrus of control and kindled animals. Application of glutamate (100 µm) in the presence of the NMDA receptor antagonist d-APV and the AMPA receptor antagonist, SYM 2206 caused a slight depression of evoked monosynaptic inhibitory postsynaptic currents (IPSCs) in control, but a substantial decrease in kindled dentate granule cells. The observation that kainate receptor activation altered paired-pulse depression and reduced the frequency of TTX-insensitive miniature IPSCs without affecting their amplitude is consistent with a presynaptic action on the inhibitory terminal to reduce GABA release. In kindled preparations, neither glutamate (100 µm) nor kainate (10 µm) applied in a concentration known to depolarize hippocampal interneurons led to an increase of the TTX-sensitive spontaneous IPSC frequency nor to changes of the postsynaptic membrane properties. Consistently, the inhibitory effect on evoked IPSCs was not affected by the presence of the GABAB receptor antagonist, CGP55845A, thus excluding a depression by an enhanced release of GABA acting on presynaptic GABAB receptors. The enhanced inhibition of GABA release following presynaptic kainate receptor activation favours a use-dependent hyperexcitability in the epileptic dentate gyrus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 13 (2001), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Medial entorhinal cortex (EC) deep layer neurons projecting to the dentate gyrus (DG) were studied. Neurons, retrogradely-labelled with rhodamine-dextran-amine were characterized electrophysiologically with the patch clamp technique and finally labelled with biocytin. Pyramidal and nonpyramidal neurons form projections from the deep layers of the EC to the molecular layer of the DG. In addition, both classes of projection neurons send ascending axon collaterals to the superficial layers of the EC. Both classes of neurons were characterized physiologically by regular action potential firing upon depolarizing current injection. While a substantial number of pyramidal projection cells showed intrinsic membrane potential oscillations, none of the studied nonpyramidal cells exhibited oscillations. Despite the morphological similarity of bipolar and multipolar cells to those of GABAergic interneurons in the EC, their electrophysiological characteristics were similar to those of principal neurons and immunocytochemistry for GABA was negative. We conclude, that neurons of the deep layers of the medial EC projecting to the DG may function as both local circuit and projecting neurons thereby contributing to synchronization between deep layers of the EC, superficial layers of the EC and the DG.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The entorhinal cortex (EC) is a major gateway for sensory information into the hippocampus and receives a cholinergic input from the forebrain. Therefore, we studied muscarinic effects on excitability and intracellular Ca2+ signalling in layer II stellate and layer III pyramidal projection neurons of the EC. In both classes of neurons, local pressure-pulse application of carbachol (1 mm) caused small, atropine-sensitive membrane depolarizations that were not accompanied by any detectable changes in [Ca2+]i. At a higher concentration (10 mm), carbachol induced a larger membrane depolarization associated with synaptic oscillations and epileptiform activity in both classes of neurons. In contrast to the intrinsic theta rhythm in stellate cells with one dominant peak frequency at ∼ 7 Hz, the synaptically mediated oscillation induced by carbachol showed three characteristic peaks in the theta and gamma frequency range at ∼ 11, 23 and 40 Hz. Although carbachol-induced epileptiform activity was associated with increases in intracellular free Ca2+ in both layer II and III cells, the observed [Ca2+]i accumulation was significantly larger in layer III than in layer II cells. Responses to intracellular current injections showed differences in Ca2+ accumulation in layer II and III cells at the same membrane potentials, suggesting a dominant expression of low- and high-voltage-activated Ca2+ channels in these layer II and III cells, respectively. In conclusion, we present evidence for significant differences in the [Ca2+]i regulation between layer II stellate and layer III pyramidal cells of the medial EC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Morphological, immunophenotypical and electrophysiological properties were investigated in isolated cultured murine microglia before and after exposure to astrocyte-conditioned medium (ACM). Following application of ACM, microglial cells underwent a dramatic shape transformation from an amoeboid appearance to a ramified morphology. In parallel to morphological changes, a downregulation of macrophage surface antigens was observed in microglia exposed to ACM. Staining intensities for major histocompatibility complex (MHC) class II molecules and for the adhesion molecules leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased in ramified microglia 5 days after exposure to ACM. In microglial cells treated daily with ACM over a period of 5 days, the smallest staining intensities for all surface antigens as well as the smallest ramification index as a measure for the highest degree of ramification were determined. In addition, upregulation of delayed rectifier K +  currents was observed in microglia exposed to ACM for 1 day or treated daily with ACM for 5 days. In contrast, untreated amoeboid microglia or ramified microglia analysed 5 days after exposure to ACM did not express delayed rectifier K +  currents. Analyses of the resting membrane potential and expression levels and properties of inward rectifier K +  currents did not reveal any differences between untreated and ACM-treated microglia. It is suggested that electrophysiological properties of microglia do not strongly correlate with the morphology or the immunophenotype of microglial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cholinergic activation of entorhinal cortex (EC) layer V neurons plays a crucial role in the medial temporal lobe memory system and in the pathophysiology of temporal lobe epilepsy. Here, we demonstrate that muscarinic activation by focal application of carbachol depolarizes EC layer V neurons and induces epileptiform activity in rat brain slices. These seizure-like bursts are associated with a somatic [Ca2+]i increase of 293 ± 82 nm and are blocked by the glutamate receptor antagonists CNQX and APV. Muscarinic activation did not directly evoke a [Ca2+]i increase, but subthreshold and suprathreshold depolarization did. Functional axon mapping revealed local axon branching as well as axon collaterals ascending to layers II and III. During blockade of ionotropic glutamatergic AMPA and NMDA receptors, carbachol depolarized layer V neurons by +7.5 ± 3.4 mV. This direct muscarinic depolarization was associated with a conductance increase of 35 ± 10.3% (+4.3 ± 1.25 nS). Intracellular buffering of [Ca2+]i changes did not block this depolarization, but prolonged action potential duration and reduced adaptation of action potential firing. The muscarinic depolarization was neither blocked by combining intracellular Ca2+-buffering (EGTA or BAPTA) with non-specific Ca2+-channel inhibition by Ni+ (1 mm), nor by Ba2+ (1 mm) nor during inhibition of the h-current by 2 mm Cs+. In whole-cell patch-clamp recording, reversal of the muscarinic current occurred at about −45 mV and −5 mV with complete substitution of intrapipette K+ with Cs+. Thus, muscarinic depolarization of EC layer V neurons appears to be primarily mediated by Ca2+-independent activation of non-specific cation channels that conduct K+ about three times as well as Na+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Differentiation of microglial cells is characterized by transformation from ameboid into ramified cell shape and up-regulation of K+ channels. The processes of microglial differentiation are controlled by astrocytic factors. The mechanisms by which astrocytes cause developmental changes in morphological and electrophysiological properties of microglia have remained unclear. We show here that the cytokines transforming growth factor-β (TGF-β), macrophage colony-stimulating factor (M-CSF) and granulocyte/macrophage colony-stimulating factor (GM-CSF) are released by astrocytes at concentrations sufficient to induce ramification and up-regulation of delayed rectifier (DR) K+ channels in microglia. Transformation from ameboid into ramified morphology induced in microglia by exposure to astrocyte-conditioned medium (ACM) was inhibited by neutralizing antibodies against TGF-β, M-CSF or GM-CSF, whilst ACM-induced DR channel expression was exclusively inhibited by antibodies against TGF-β. Although both ramification and DR channel up-regulation occurred simultaneously, DR channel blockade by charybdotoxin failed to inhibit microglial ramification. The ACM-induced ramification of microglia was inhibited by the tyrosine kinase inhibitor genistein, whereas DR channel up-regulation did not occur in the presence of the serine/threonine kinase inhibitor H7. Our data suggest that astrocytes modulate processes of microglial differentiation in parallel but via distinct signalling pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In addition to the well-established functional description of the glycine receptor (GlyR) in the spinal cord, GlyR expression has recently been found in higher brain regions, such as the striatum or hippocampus. In this study we have investigated the electrophysiological response of glycine in the rat entorhinal cortex slice. In all recorded cells we found significant current responses to glycine with an EC50 value of about 100 µm. Most importantly, we detected a cross-inhibition of glycine responses by GABA but not vice versa. These findings are in line with recent published data of cross-talks between GABAAR and GlyR but indicate a novel type of cross-inhibition of these receptors in the entorhinal cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...