Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Microglia ; Macrophage colony-stimulating factor ; Patch clamp ; Whole-cell recording ; Inward rectifying potassium current ; Proton current
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Microglia were isolated from a murine neonatal brain cell culture in which their development had been stimulated by supplementation with the macrophage/microglial growth factor macrophage colony-stimulating factor (M-CSF). Using the whole-cell configuration of the patch-clamp technique, voltage-gated membrane currents were recorded from these microglial cells. Hyperpolarization induced inward rectifying K+ currents, as described for microglia from untreated cultures. These currents activated negative to the K+ equilibrium potential and, with a strong hyperpolarization, displayed time-dependent inactivation. The inactivation was abolished when extracellular NaCl was replaced by N-methyl-d-glucamine (NMG), thereby indicating a partial block of this K+ conductance by Na+. Inward rectifying currents were also blocked by extracellularly applied Cs+ or Ba2+. They were slightly diminished following treatment with extracellular tetraethylammonium chloride (TEA) but were not affected by 4-aminopyridine (4-AP). Upon long lasting depolarizing voltage pulses to potentials positive to 0 mV, the cells exhibited a slowly activating H+ current which could be reduced by application of inorganic polyvalent cations (Ba2+, Cd2+, Co2+, La3+, Ni2+, Zn2+) as well as by 4-AP or TEA. Based on their kinetics and pharmacological characteristics, both currents detected on M-CSF-grown microglia are suggested to correspond to the inward rectifier and the H+ current of macrophages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...