Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 7 (1995), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The long-term structural and functional consequences of transient forebrain ischaemia were studied with morphological, immunohistochemical and in vitro electrophysiological techniques in the primary somatosensory cortex of Wistar rats. After survival times of 10–17 months postischaemia, neocortical slices obtained from ischaemic animals were characterized by a pronounced neuronal hyperexcitability in comparison with untreated age-matched controls. Extra-and intracellular recordings in supragranular layers revealed all-or-none long-latency recurrent responses to orthodromic synaptic stimulation of the afferent pathway. These responses were characterized by durations up to 1.7 s, by multiple components and by repetitive synaptic burst discharges. The reversible blockade of this late activity by dl-aminophosphonovaleric acid (APV) suggested that this activity was mediated by Kmethyl-l-aspartate (NMDA) receptors. The peak conductance of inhibitory postsynaptic potentials was significantly smaller in neurons recorded in neocortical slices obtained from ischaemic animals than those from the controls. However, the average number of parvalbumin (PV)-labelled neurons per mm3, indicative of a subpopulation of GABAergic interneurons, and the average number and length of dendritic processes arising from PV-containing cells was not significantly different between ischaemic and control cortex. The prominent dysfunction of the inhibitory system in ischaemic animals occurred without obvious structural alterations in PV-labelled cells, indicating that this subpopulation of GABAergic interneurons is not principally affected by ischaemia. Our data suggest a long-term down-regulation of inhibitory function and a concurrent NMDA receptor-mediated hyperexcitability in ischaemic neocortex. These alterations may result from structural and/or functional properties of inhibitory non-PV-positive neurons or permanent functional modifications on the subcellular molecular level, i.e. alterations in the phosphorylation status of GABA and/or NMDA receptors. The net result of these long-term changes is an imbalance between the excitatory and inhibitory systems in the ischaemic cortex with the subsequent expression and manifestation of intracortical hyperexcitability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In addition to the well-established functional description of the glycine receptor (GlyR) in the spinal cord, GlyR expression has recently been found in higher brain regions, such as the striatum or hippocampus. In this study we have investigated the electrophysiological response of glycine in the rat entorhinal cortex slice. In all recorded cells we found significant current responses to glycine with an EC50 value of about 100 µm. Most importantly, we detected a cross-inhibition of glycine responses by GABA but not vice versa. These findings are in line with recent published data of cross-talks between GABAAR and GlyR but indicate a novel type of cross-inhibition of these receptors in the entorhinal cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 16 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Several lines of evidence indicate a substantial contribution of kainate receptors to temporal lobe seizures. The activation of kainate receptors located on hippocampal inhibitory interneurons was shown to reduce GABA release. A reduced GABA release secondary to kainate receptor activation could contribute to an enhanced seizure susceptibility. As the dentate gyrus serves a pivotal gating function in the spread of limbic seizures, we tested the role of kainate receptors in the regulation of GABA release in the dentate gyrus of control and kindled animals. Application of glutamate (100 µm) in the presence of the NMDA receptor antagonist d-APV and the AMPA receptor antagonist, SYM 2206 caused a slight depression of evoked monosynaptic inhibitory postsynaptic currents (IPSCs) in control, but a substantial decrease in kindled dentate granule cells. The observation that kainate receptor activation altered paired-pulse depression and reduced the frequency of TTX-insensitive miniature IPSCs without affecting their amplitude is consistent with a presynaptic action on the inhibitory terminal to reduce GABA release. In kindled preparations, neither glutamate (100 µm) nor kainate (10 µm) applied in a concentration known to depolarize hippocampal interneurons led to an increase of the TTX-sensitive spontaneous IPSC frequency nor to changes of the postsynaptic membrane properties. Consistently, the inhibitory effect on evoked IPSCs was not affected by the presence of the GABAB receptor antagonist, CGP55845A, thus excluding a depression by an enhanced release of GABA acting on presynaptic GABAB receptors. The enhanced inhibition of GABA release following presynaptic kainate receptor activation favours a use-dependent hyperexcitability in the epileptic dentate gyrus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Differentiation of microglial cells is characterized by transformation from ameboid into ramified cell shape and up-regulation of K+ channels. The processes of microglial differentiation are controlled by astrocytic factors. The mechanisms by which astrocytes cause developmental changes in morphological and electrophysiological properties of microglia have remained unclear. We show here that the cytokines transforming growth factor-β (TGF-β), macrophage colony-stimulating factor (M-CSF) and granulocyte/macrophage colony-stimulating factor (GM-CSF) are released by astrocytes at concentrations sufficient to induce ramification and up-regulation of delayed rectifier (DR) K+ channels in microglia. Transformation from ameboid into ramified morphology induced in microglia by exposure to astrocyte-conditioned medium (ACM) was inhibited by neutralizing antibodies against TGF-β, M-CSF or GM-CSF, whilst ACM-induced DR channel expression was exclusively inhibited by antibodies against TGF-β. Although both ramification and DR channel up-regulation occurred simultaneously, DR channel blockade by charybdotoxin failed to inhibit microglial ramification. The ACM-induced ramification of microglia was inhibited by the tyrosine kinase inhibitor genistein, whereas DR channel up-regulation did not occur in the presence of the serine/threonine kinase inhibitor H7. Our data suggest that astrocytes modulate processes of microglial differentiation in parallel but via distinct signalling pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 13 (2001), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The granule cells of the dentate gyrus (DG) send a strong glutamatergic projection, the mossy fibre tract, toward the hippocampal CA3 field, where it excites pyramidal cells and neighbouring inhibitory interneurons. Despite their excitatory nature, granule cells contain small amounts of GAD (glutamate decarboxylase), the main synthetic enzyme for the inhibitory transmitter GABA. Chronic temporal lobe epilepsy results in transient upregulation of GAD and GABA in granule cells, giving rise to the speculation that following overexcitation, mossy fibres exert an inhibitory effect by release of GABA. We therefore stimulated the DG and recorded synaptic potentials from CA3 pyramidal cells in brain slices from kindled and control rats. In both preparations, DG stimulation caused excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) sequences. These potentials could be completely blocked by glutamate receptor antagonists in control rats, while in the kindled rats, a bicuculline-sensitive fast IPSP remained, with an onset latency similar to that of the control EPSP. Interestingly, this IPSP disappeared 1 month after the last seizure. When synaptic responses were evoked by high-frequency stimulation, EPSPs in normal rats readily summate to evoke action potentials. In slices from kindled rats, a summation of IPSPs overrides that of the EPSPs and reduces the probability of evoking action potentials. Our data show for the first time that kindling induces functionally relevant activity-dependent expression of fast inhibition onto pyramidal cells, coming from the DG, that can limit CA3 excitation in a frequency-dependent manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 13 (2001), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Medial entorhinal cortex (EC) deep layer neurons projecting to the dentate gyrus (DG) were studied. Neurons, retrogradely-labelled with rhodamine-dextran-amine were characterized electrophysiologically with the patch clamp technique and finally labelled with biocytin. Pyramidal and nonpyramidal neurons form projections from the deep layers of the EC to the molecular layer of the DG. In addition, both classes of projection neurons send ascending axon collaterals to the superficial layers of the EC. Both classes of neurons were characterized physiologically by regular action potential firing upon depolarizing current injection. While a substantial number of pyramidal projection cells showed intrinsic membrane potential oscillations, none of the studied nonpyramidal cells exhibited oscillations. Despite the morphological similarity of bipolar and multipolar cells to those of GABAergic interneurons in the EC, their electrophysiological characteristics were similar to those of principal neurons and immunocytochemistry for GABA was negative. We conclude, that neurons of the deep layers of the medial EC projecting to the DG may function as both local circuit and projecting neurons thereby contributing to synchronization between deep layers of the EC, superficial layers of the EC and the DG.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Hippocampal pyramidal neurons were either cultured from prenatal rats or acutely isolated from the brain of newborn and juvenile rats. The influence of lowering the concentration of the extracellular potassium concentration ([K+]0) on isolated fast transient outward K+ currents (IA) was studied in these neurons using the patch clamp technique in the whole cell configuration. With respect to the response of IA to lowering [K+]0, three types of cells were observed. The first subpopulation of neurons was characterized by a complete suppression of IA over the whole voltage range under potassium-free solutions (type A neurons). A second proportion of cells showed an increase of IA at test pulses below -0 mV and a decrease of IA at voltages above -0 mV (type B neurons). In a third group of neurons, amplitudes of lA increased at all potentials tested during omission of potassium ions from the extracellular superfusate (type C neurons). Whereas type A and type B neurons were preferentially found in freshly plated cultures and newborn rats, the majority of type C cells was detected in long-term cultures and in animals of older ages. Thus, hippocampal A-currents lose their sensitivity to extracellular potassium ions during early ontogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neuronal energy needs are mainly covered via mitochondrial oxidative phosphorylation. Even if the energy supply appears identical in immature and adult brain, nevertheless quantitative differences exist. The present study focuses on the adaptations in cellular energy metabolism caused by the neuronal maturation. As main parameters of oxidative phosphorylation, cellular oxygen consumption and mitochondrial membrane potential were measured in isolated rat cortical cells using a Clark-type oxygen electrode and microfluorometric techniques. In four age groups (E18–P2, P8–P12, P16–P20, ≥ P28), unstimulated neurons showed a significant age-dependent increase in basal oxygen consumption (6.1 up to 10.2 nm/min/107 cells). The excitatory neurotransmitter glutamate induced a further, but age- and concentration-independent, elevation of oxygen consumption to a plateau ≥ 14 nm/min/107 cells and a complete depolarization of mitochondrial membrane in neurons ≥ P8. Stimulation using K+ (5–50 mm) effected a concentration- and age-dependent increase in oxygen consumption, but a similar nearby complete depolarization of mitochondrial membrane in all tested age groups. Furthermore, uncoupling mitochondrial membrane function followed by a complete depolarization of mitochondrial membrane showed a maximal oxygen consumption (14–15 nm/min/107 cells) only in neurons ≥ P8. These data suggest that developing and adult cortical neurons cover their increased need of energy following stimulation by an efficiency improvement of mitochondrial oxidative phosphorylation. The age-independent limited capacity of mitochondrial oxidative phosphorylation, however, causes a reduction in cellular energy disposal in mature neurons and therefore may play a critical role in the increased sensitivity of adult neurons against excitotoxicity and ischaemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Cholinergic activation of entorhinal cortex (EC) layer V neurons plays a crucial role in the medial temporal lobe memory system and in the pathophysiology of temporal lobe epilepsy. Here, we demonstrate that muscarinic activation by focal application of carbachol depolarizes EC layer V neurons and induces epileptiform activity in rat brain slices. These seizure-like bursts are associated with a somatic [Ca2+]i increase of 293 ± 82 nm and are blocked by the glutamate receptor antagonists CNQX and APV. Muscarinic activation did not directly evoke a [Ca2+]i increase, but subthreshold and suprathreshold depolarization did. Functional axon mapping revealed local axon branching as well as axon collaterals ascending to layers II and III. During blockade of ionotropic glutamatergic AMPA and NMDA receptors, carbachol depolarized layer V neurons by +7.5 ± 3.4 mV. This direct muscarinic depolarization was associated with a conductance increase of 35 ± 10.3% (+4.3 ± 1.25 nS). Intracellular buffering of [Ca2+]i changes did not block this depolarization, but prolonged action potential duration and reduced adaptation of action potential firing. The muscarinic depolarization was neither blocked by combining intracellular Ca2+-buffering (EGTA or BAPTA) with non-specific Ca2+-channel inhibition by Ni+ (1 mm), nor by Ba2+ (1 mm) nor during inhibition of the h-current by 2 mm Cs+. In whole-cell patch-clamp recording, reversal of the muscarinic current occurred at about −45 mV and −5 mV with complete substitution of intrapipette K+ with Cs+. Thus, muscarinic depolarization of EC layer V neurons appears to be primarily mediated by Ca2+-independent activation of non-specific cation channels that conduct K+ about three times as well as Na+.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The entorhinal cortex (EC) is a major gateway for sensory information into the hippocampus and receives a cholinergic input from the forebrain. Therefore, we studied muscarinic effects on excitability and intracellular Ca2+ signalling in layer II stellate and layer III pyramidal projection neurons of the EC. In both classes of neurons, local pressure-pulse application of carbachol (1 mm) caused small, atropine-sensitive membrane depolarizations that were not accompanied by any detectable changes in [Ca2+]i. At a higher concentration (10 mm), carbachol induced a larger membrane depolarization associated with synaptic oscillations and epileptiform activity in both classes of neurons. In contrast to the intrinsic theta rhythm in stellate cells with one dominant peak frequency at ∼ 7 Hz, the synaptically mediated oscillation induced by carbachol showed three characteristic peaks in the theta and gamma frequency range at ∼ 11, 23 and 40 Hz. Although carbachol-induced epileptiform activity was associated with increases in intracellular free Ca2+ in both layer II and III cells, the observed [Ca2+]i accumulation was significantly larger in layer III than in layer II cells. Responses to intracellular current injections showed differences in Ca2+ accumulation in layer II and III cells at the same membrane potentials, suggesting a dominant expression of low- and high-voltage-activated Ca2+ channels in these layer II and III cells, respectively. In conclusion, we present evidence for significant differences in the [Ca2+]i regulation between layer II stellate and layer III pyramidal cells of the medial EC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...