Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2145
    Keywords: Key words Anther ; Self-incompatibility ; S-locus glycoprotein ; Tapetum-specific promoter ; Transgenic Brassica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  S-locus glycoprotein (SLG) is known to be one of the proteins related to self-incompatibility in Brassica, and its transcripts are detected in anthers as well as stigmas. However, an SLG protein has not been detected in anthers so far. Because of sporophytic control of the self-incompatibility (SI) phenotype of pollen, an SLG gene is expected to be expressed in the sporophytic tissue of anthers, i.e., the tapetum. Overexpression of an SLG gene in the tapetum would enable us to predict the localization and function of an SLG protein in anthers. In this study, an SLG gene of self-incompatible B. campestris under the control of a tapetum-specific promoter was introduced into self-compatible B. napus. Immunoblot analysis using anti-SLG antiserum detected the exogenous SLG protein in the immature anthers, but not in the mature anthers. Immunoelectron microscopy showed the SLG protein to be localized in the tapetum and in the exine cell wall layer at the stage when the tapetum was degenerating. This result indicates the possible movement of the SLG protein from the tapetum to the pollen surface. A pollination test indicated that the pollen of the transgenic B. napus did not gain the SI phenotype.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6849
    Keywords: barley chromosome ; high-resolution scanning electron microscopy ; surface structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Barley chromosomes were prepared for high-resolution scanning electron microscopy using a combination of enzyme maceration, treatment in acetic acid and osmium impregnation using thiocarbohydrazide. Using this technique, the three-dimensional ultra-structure of interphase nuclei and mitotic chromosomes was examined. In interphase, different levels of chromatin condensation were observed, consisting of fibrils 10 nm in diameter, 20- to 40-nm fibres and a higher order complex. In prophase, globular and strand-like structures composed of 20- to 40-nm fibres were dominant. As the cells progressed through the cell cycle and the chromatin condensed, globular and strand-like structures (chromomeres) were coiled and packed to form chromosomes. Chromomeres were observed as globular protuberances on the surface of metaphase chromosomes. These findings indicate that the chromomere is a fundamental substructure of the higher order architecture of the chromosome. In the centromeric region, there were no globular protuberances, but 20- to 40-nm fibres were folded compactly to form a higher level organization surrounding the chromosomal axis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...