Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An encapsulating layer was deposited on the surface of tetragonal zirconia polycrystals doped with 3 mol% of yttria (3Y-TZP), to prevent low-temperature environmental degradation (aging) of the material. The layer, which was composed of silica and zircon, was formed on the surface by exposing the specimens next to a bed of silicon carbide powder in a flowing hydrogen atmosphere that contained ∼0.1% water vapor at 1450°C. The layer was ∼0.5 µm thick and is expected to be under strong residual compressive stress. This encapsulation process remarkably improved the low-temperature degradation of the material. The strength of the specimens also was improved by this process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Titanium diboride (TiB2) was hot-pressed at a temperature of 1800°C, and silicon nitride (Si3N4) was added as a sintering aid. The amount of Si3N4 that was added had a significant influence on the sinterability and mechanical properties of the TiB2. When a small amount (2.5 wt%) of Si3N4 was added, the Si3N4 reacted with titania (TiO2) that was present on the surface of the TiB2 powder to form titanium nitride (TiN), boron nitride (BN), and amorphous silica (SiO2). The elimination of TiO2 suppressed the grain growth effectively, which led to an improvement in the densification of TiB2. The formation of SiO2 also was deemed beneficial for densification. The mechanical properties-especially, the flexural strength-were enhanced remarkably through these improvements in the sinterability and microstructure. On the other hand, when a large amount (greaterthan equal to5 wt%) of Si3N4 was added, the mechanical properties were not improved much, presumably because of the extensive formation of a glassy Si-Ti-O-N phase at the grain boundaries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effects of microstructure and residual stress on the mechanical properties of Si3N4-based three-layer composite materials were investigated. The microstructure of each layer was controlled by the addition of two differently sized silicon carbides: fine SiC nanoparticles (∼200 nm) or relatively large SiC platelets (∼20 µm). When the SiC nanoparticles were added, the average grain size of Si3N4 was reduced because of the inhibition of grain growth by the particles. On the other hand, when the SiC platelets were added, the microstructure of Si3N4 was not much changed because of the large size of the platelets. Three-layer composites were fabricated by placing the Si3N4/SiC-nanoparticle layers on the surface of the Si3N4/SiC-platelet layer. The residual stress was controlled by varying the amount of SiC added. The mechanical properties of three-layer composites with various combinations of microstructure and residual stress level were investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...