Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 342-343 (July 2007), p. 593-596 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Zirconia was introduced into the dentistry as a metal-replacement material because of itsoutstanding mechanical properties like high flexural strength and fracture toughness. The purposeof this study was to evaluate bone response and examine the surface characteristics of zirconiabasedimplant. Screw shaped c.p. titanium implants(group 1), HA-based composite implants(group2), HA/FA coated ZrO2 implants(group 3) and FA coated ZrO2 implants(group 4) were installed inrabbit tibias. After 4 and 12 weeks of healing period, the histomorphometric analysis was performedwith an Olympus BX microscope connected to a computer. The percentage of bone-to-implantcontact in the 3 best consecutive threads and the percentage of bone inside the same threads werecalculated. the present study demonstrated the excellent bone response of ZrO2-based implantsfabricated by various methods to combine the advantages of ZrO2, HA, and FA
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Dense and crack-free lead zinc niobate–lead zirconate titanate (PZN–PZT) films were deposited on silicon and glass substrates by spin coating using a sol containing propanediol and polyvinylpyrrolidone. Single-layer PZN–PZT films as thick as 0.80 μm were deposited by a single spin coating with successive heat treatments at 250° and 700°C. After heat treatment, the films were dense, crack free, and optically transparent. In addition, the crystallographic orientation of the thick film was controllable by adjusting the heat-treatment conditions. The ferroelectric properties of the (111)-oriented film were superior to those of the (100)-oriented film. On the other hand, the piezoelectric and dielectric properties of the (100)-oriented film were better than those of the (111)-oriented film. The piezoelectric coefficients (d33) of the PZN–PZT films of 4.0-μm-thickness were 192 and 110 pC/N for the (100)-and (111)-oriented films, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The sintering behavior and piezoelectric properties of the lead zirconate titanate (Pb(ZrTi)O3, PZT)–lead zinc niobate (Pb(Zn1/3Nb2/3)O3, PZN) system were investigated. The sintering temperature required for full densification of the PZT-PZN system was significantly lowered when the proportion of PZN was increased. The density of the specimen composed of 60% PZT and 40% PZN (0.6PZT-0.4PZN, Pb((Zr0.47Ti0.53)0.6–(Zn1/3Nb2/3)0.4)O3) sintered at 880°C for 4 h was 8.15 g/cm3, which was 〉97% of the theoretical value. This improved densification behavior was attributed to the combined effects of the high sinterability of PZN and the stability of the PZT pcrovskite structure. The piezoelectric and dielectric properties of the 0.6PZT-0.4PZN specimen sintered at 880°C were comparable with those of a specimen with the same composition sintered at 1200°C for 2 h. The piezoelectric coefficient (d33) and the electromechanical coupling factor (kp) of the 0.6PZT-0.4PZN specimen sintered at 880°C were 460 pC/N and 0.6, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Composite coatings, consisting of calcium phosphate (CaP) ceramics and phosphate-based glass (P-glass), were obtained on a strong ZrO2 porous scaffold to improve biocompatibility by combining mechanical properties and biological activity. Powder mixtures of hydroxyapatite (HA) and P-glass in varying composition and content were dip-coated on a ZrO2 porous scaffold and heat-treated above 800°C for 2 h in air. During thermal treatment, substantial reaction and crystallization occurred, resulting in coating phases of HA, tricalcium phosphate (TCP), dicalcium phosphate (DCP), and surrounding glass. The CaP-glass coating layer was highly dense and uniform and adhered firmly to the ZrO2 scaffold. The adhesion strength of the coating layer as tested on a nonporous disk increased with increasing glass addition and decreasing CaO content in glass. The highest strength was about 40 MPa, an improvement of twice as high as that of pure HA coating. The osteoblastic cells grew and spread actively through the coated scaffolds. The differentiation of cells on the CaP coatings was much higher than that on ZrO2 substrate and comparable to or slightly higher than that on pure HA coating.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A sol–gel-derived Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMNT) thin film was prepared using spin coating and a PbO cover coat technique. The amount of lead excess in the precursor solution had significant effects on the phase development and microstructure of the PMNT film. The PbO cover coat proved to be effective on suppressing the formation of pyrochlore phases. PMNT thin films with a pure perovskite structure were obtained by adding 30 mol% excess lead in the precursor solution and coating the PbO layer on the top of the film. The remnant polarization (Pr), the dielectric constant (ɛr), and the dissipation factor (tan δ) of these thin films, which had a thickness of 150 nm, were determined to be 9 μC/cm2, 1370, and 0.031, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A spatially variant dielectric Ca–Mg–silicate (CMS)/Bi–Ba–Nd–titania (BBNT) composite, in which periodic BBNT inclusions were embedded in the CMS matrix, was fabricated using the thermoplastic extrusion. The co-firing behavior of the composite was evaluated in terms of its shrinkage compatibility, thermoplastic compatibility, and chemical compatibility. The noticeable shrinkage mismatch between CMS and BBNT materials was observed. Such shrinkage mismatch strongly affected the interfacial bonding types of the composites. The good interfacial bonding was observed for the composite having BBNT inclusions in the CMS matrix; however, the interfacial cracking and matrix cracking for the opposite design (i.e., CMS inclusions in the BBNT matrix). In addition, the (Ca, Zn)-rich glassy phase in the CMS region migrated into the BBNT region, forming an interfacial reaction layer. The dielectric properties of the CMS, BBNT, and CMS–BBNT mixture were measured to evaluate the spatially variant dielectric CMS/BBNT composite as a novel dielectric substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Ceramic Society 87 (2004), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Hydroxyapatite (HA) and fluor-hydroxyapatite (FHA) powders were synthesized by a sol–gel method for usage as bone filler and drug carrier. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol–water-based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of FHA powders. With heat treatment above 400°C, a characteristic apatite phase was observed for all the sol–gel powders. However, the crystallization temperature decreased with increasing fluoride addition. The tricalcium phosphate (TCP) phase formed in the pure HA powder above 800°C was attenuated in the FHA powders, confirming an enhanced phase stability of the FHA powders. Increasing the F− addition improved crystallinity and increased the crystallite size, as was determined from X-ray diffraction (XRD) analyses. The lattice parameters of the heat-treated powders varied corresponding to the fluoride addition, i.e., a gradual decrease in the a-axis, while little change in the c-axis was observed with increasing fluoride addition, indicating a nearly complete substitution of fluoride within the apatite lattice. However, little difference was observed with heat-treatment temperatures (400°–1000°C). The powders substituted with fluoride exhibited reduced dissolution rates in an in vitro solution as compared with the pure HA powder, suggesting the possibility of tailoring bioactivity with fluoride substitution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effects of calcium fluoride (CaF2) additions on the densification and mechanical properties of hydroxyapatite–zirconia composites (HA–ZrO2) were investigated. When small amount of CaF2 was added, the density of the composites was markedly enhanced. The reactions of HA with CaF2, which led to the formation of fluorapatite (FA), were attributed to the observed improvements in densification. When HA–20-vol%-ZrO2 composites were sintered, with the addition of 5 vol% of CaF2, in air at 1300°C, the density of the specimen approached 98% of the theoretical value. The flexural strength and fracture toughness of the composites were also improved, as a result of the enhanced densification.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A three-layered composite, composed of a strong outer layer (monolithic S3N4) and a tough inner layer (fibrous Si3N4/BN monolith), was fabricated by hot-pressing. For the inner layer, a Si3N4–polymer fiber made by extrusion was coated by dipping it into a 20 wt% BN-containing slurry. The three-layered composite exhibited excellent mechanical properties, including high strength, work of fracture, and crack resistance, because of the combination of a strong outer layer and a tough inner layer. In other words, the strong outer layer withheld the applied stress, while the tough inner layer promoted crack interactions through the weak BN cell boundaries. Also, the residual thermal stress on the surface due to the anisotropy in the coefficient of thermal expansion of BN affected a median/radial crack generation after indentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Microstructural evolution of lead lanthanum zirconate titanate (PLZT) ceramics caused by diffusion of the Mn ion was observed. Specimens with layered structures were fabricated by copressing a PLZT powder (9/65/35) doped with Mn and same PLZT powder without the dopant. When the copressed specimen was sintered at 1200°C in air, the Mn ion diffused out of the doped region. The region originally containing the Mn ions was totally free of pores while all other regions remained porous. The formation of lattice vacancies, as a result of Mn diffusion, was attributed to the enhanced material transport and the resultant rapid densification.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...