Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The major active ingredient of marijuana, (−)-Δ9-tetrahydrocannabinol, exerts its psychoactive effects via binding to cannabinoid CB1 receptors, which are widely distributed in the brain. Radionuclide imaging of CB1 receptors in living human subjects would help explore the presently unknown physiological roles of this receptor system, as well as the neurochemical consequences of marijuana dependence. Currently available cannabinoid receptor radioligands are exceedingly lipophilic and unsuitable for in vivo use. We report the development of a novel radioligand, [123I]AM281{N-(morpholin-4-yl)-5-(4-[123I]iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide}, that is structurally related to the CB1-selective antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]. Baboon single photon emission computed tomography studies, mouse brain dissection studies, and ex vivo autoradiography in rat brain demonstrated rapid passage of [123I]AM281 into the brain after intravenous injection, appropriate regional brain specificity of binding, and reduction of binding after treatment with SR141716A. AM281 has an affinity in the low nanomolar range for cerebellar binding sites labeled with [3H]SR141716A in vitro, and binding of [123I]AM281 is inhibited by several structurally distinct cannabinoid receptor ligands. We conclude that [123I]AM281 has appropriate properties for in vivo studies of cannabinoid CB1 receptors and is suitable for imaging these receptors in the living human brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical crystallography 26 (1996), S. 601-605 
    ISSN: 1572-8854
    Keywords: Prodine ; opioids ; piperidine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The meta hydroxyphenyl analog of α-prodine (1,3-dimethyl-(4-meta-hydroxy phenyl)-4-propionyloxypiperidine) free base crystallizes in the orthorhombic space group P212121. The relative configuration of the compound shows the piperidine ring is in a chair conformation, the phenyl ring, the 3-methyl, and the N-methyl are equatorial, and the 4-propionyloxy group is axial. The molecular structure is similar to that of racemic α-prodine and the potent opioid agonist, ketobemidone. There is a hydrogen bond between N(1) ... O(1) 2.79 Å.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-3904
    Keywords: Peptide hormones ; Dipalmitoylphosphatidylcholine bilayers ; Hypertension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary This study of angiotensin II (ANG II) membrane interactions uses a combination of31P NMR spectroscopy and differential scanning calorimetry (DSC), two valuable and complementary techniques which can provide useful information about the thermotropic and dynamic properties of peptide hormones in membranes. The major conclusion from the calorimetric experiments is that ANG II affects the phase properties of hydrated dipalmitoyl-phosphatidylcholine (DPPC) bilayers by mainly broadening the pretransition area. Preliminary31P NMR data seem to confirm the DSC results by showing that ANG II produces a lowering of the pretransition temperature but affects only minimally the main phase transition. In combination, the results from the two methods may indicate that the hormone produces its effects on the phospholipid head groups while its effects on the bilayer alkyl chains are not significant. Such results can be interpreted to mean that ANG II closely interacts with the phospholipid head groups perhaps up to the level of the interface, but does not enter deeper into the membrane bilayer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...