Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Microarrays have set the stage for an explosion of large-scale expression data, driven by a diversity of genome sequencing projects. The technology has already demonstrated its applications in analysis of model systems, such as the response of mammalian fibroblasts to serum and sporulation in ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 379 (1996), S. 597-600 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE genome sequence of the human pathogen Haemophilus influenzae has recently been completed1. Significant progress has also been made in sequencing the genomes of several model organisms, including those of the bacteria Escherichia coir and Bacillus subtilis3, the budding yeast Saccharomyces ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Imperfect yeasts ; Genome plasticity ; Adenine biosynthesis ; Mitotic recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The imperfect yeast Candida maltosa has an ill-defined genetic constitution; it is nominally diploid, but probably highly aneuploid, in nature. We report on polymorphisms specifically affecting those chromosomes which bear the cm-ADE1 gene. This gene encodes phosphoribosylaminoimidazole-succinocarboxamide synthetase, an enzyme in the adenine biosynthetic pathway. By electrophoretic karyotype analysis, three differently sized chromosomes were demonstrated to carry cm-ADE; the size (but not the number) of these chromosomes was also found to vary, both between strains and during the mitotic growth of a single strain. Four different alleles of cm-ADE1 have been cloned and sequenced from one prototrophic strain. DNA sequence divergence between these different alleles is as high as 8%, with the greatest divergence being found in the upstream region. Mitotic recombination events that led to changes in the karyotype were followed by using cm-ADE1 DNA as an hybridization probe. A recombination hot-spot in the neighbourhood of the gene appears to be responsible for the instability of the chromosomes on which it resides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: chemostat culture ; mutants, colonial ; Fusarium graminearum A3/5 ; periodic selection ; mycoprotein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: At pH 5.8, highly branched (colonial) mutants appear in glucose-limited chemostat cultures of Fusarium graminearum A3/5 after ca. 400 h (ca. 107 generations) of growth. The appearance of these mutants was delayed by up to 144 h (45 generations) when the culture was switched at intervals of 120 h between pH 4.8 and 6.6. The concentration of cycloheximide-resistant macroconidia in the culture was used as an indicator of the periodic selection of advantageous mutants and it was found that, in chemostat populations subjected to pH oscillations, the interval (210 ± 20 h) between peaks was nearly double that observed in chemostat populations cultured at constant pH (124 ± 12 h at constant pH 5.8 and 120 h ± 17 h at constant pH 4.5), indicating that the population evolved more slowly under oscillating pH than under constant pH. When grown in mixed culture with the parental strain (A3/5), the selective advantage of two colonial mutants isolated from chemostat cultures grown under conditions of oscillating pH was found to be pH dependent. Compared to cultures grown at constant pH 5.8, a delay of ca. 312 h (87 generations) in the appearance of colonial mutants was observed when F. graminearum A3/5 was grown in glucose-limited chemostat culture at constant pH 4.5. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; functional analysis ; gene replacement ; competition experiments ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The complete yeast sequence contains a large proportion of genes whose biological function is completely unknown. One approach to elucidating the function of these novel genes is by quantitative methods that exploit the concepts of metabolic control analysis. An important first step in such an analysis is to determine the effects of deleting individual genes on the growth rate (or fitness) of Saccharomyces cerevisiae. Since the specific growth-rate effects of most genes are likely to be small, they are most readily determined by competition against a standard strain in chemostat cultures where the true steady state demanded by metabolic control analysis may be achieved. We have constructed two different standard strains in which the HO gene is replaced by either HIS3 or kanMX. We demonstrate that HO is a selectively neutral site for gene replacement. However, there is a significant marker effect associated with HIS3 which, moreover, is dependent on the physiological conditions used for the competition experiments. In contrast, the kanMX marker exhibited only a small effect on specific growth rate (≤±4%). These data suggest that nutritional markers should not be used to generate deletion mutants for the quantitative analysis of gene function in yeast but that kanMX replacements may be used, with confidence, for such studies. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0749-503X
    Keywords: 2 μm plasmid ; yeast ; maternal bias ; DNA amplification ; plasmid stability ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A distributive model has been constructed to describe the maintenance of the native 2 μm and 2 μm-based plasmids in the yeast Saccharomyces cerevisiae. This model includes elements which represent the influence of selection, segregation, replication and amplification on plasmid stability. A computer program has been written in TURBO PASCAL to implement the model and a number of simulation experiments have been carried out. These simulations permitted the choice of a form of the model which is compatible with the available experimental evidence. The form chosen involves an amplification system in which the RAF gene product binds to the Rep1/Rep2 dimer to prevent the latter acting to repress the activity of the FLP gene. At the same time an upper limit (or ‘ceiling’) was imposed on the number of plasmid molecules able to replicate. Maternal bias was accommodated by ‘tagging’ a small proportion of molecules for inheritance by the mother nucleus and these tags being removed (or ‘cleared’) by the Rep1/Rep2 dimers. This final form of the model makes specific predictions about the stability of 2 μm and YEp plasmids in yeast populations and about the distribution of plasmid copy number between cells in such populations. The predictions on stability have been subjected to experimental test and results provide good support for the model.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; functional genomics ; quantitative phenotype ; chemostat ; competition ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: One possible route to the evaluation of gene function is a quantitative approach based on the concepts of metabolic control analysis (MCA). An important first step in such an analysis is to determine the effect of deleting individual genes on the growth rate (or fitness) of S. cerevisiae. Since the specific growth-rate effects of most genes are likely to be small, we employed competition experiments in chemostat culture to measure the proportion of deletion mutants relative to that of a standard strain by using a quantitative PCR method. In this paper, we show that both densitometry and GeneScan™ analysis can be used with similar accuracy and reproducibility to determine the proportions of (at least) two strains simultaneously, in the range 10-90% of the total cell population. Furthermore, we report on a model competition experiment between two diploid nuclear petite mutants, homozygous for deletions in the cox5a or pet191 genes, and the standard strain (ho::kanMX4/ho::kanMX4) in chemostat cultures under six different physiological conditions. The results indicate that competition experiments in continuous culture are a suitable method to distinguish quantitatively between deletion mutants that qualitatively exhibit the same phenotype. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...