Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Fish physiology and biochemistry 17 (1997), S. 143-153 
    ISSN: 1573-5168
    Keywords: goldfish ; activin ; inhibin ; receptors ; perifusion ; immunocytochemistry ; cloning ; gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Activin (βAβA, βAβB and βBβB) is a dimeric protein that belongs to the transforming growth factor-β (TGF-β) superfamily of growth factors and is involved in the regulation of many physiological and developmental processes. Recently, we have demonstrated that porcine activin stimulated goldfish gonadotropin-II (GTH-II) and growth hormone (GH) secretion from dispersed pituitary cells in static culture and pituitary fragments in perifusion. The action of activin in the goldfish is unique in that it has an acute stimulatory effect on the secretion of GTH-II and GH, whereas in mammals activin usually exhibits long-term stimulatory actions on FSH secretion. The action mechanism of activin is different from that of gonadotropin-releasing hormone (GnRH). Using domain-specific antibodies against mammalian activin subunits, we subsequently demonstrated the existence of immunoreactive activin subunits (βA and βB) in the goldfish ovary, testis, pituitary and brain, suggesting endocrine, paracrine and autocrine roles for activin in the regulation of goldfish reproduction. Both activin βA and βB subunits have been cloned from goldfish genome by polymerase chain reaction (PCR). Using the PCR fragments as probes, we have cloned a full length cDNA coding for activin βB subunit from the goldfish ovary. Both activin βA and βB subunits show high homology to those of other vertebrates with the βB subunit much more conserved (93 and 98% identity with human and zebrafish βB subunit, respectively). The identity of the cloned βB subunit was further confirmed by expression in the Chinese hamster ovary (CHO) cells and detection of the specific activity of activin in the culture medium. The messenger RNA of activin βB subunit is expressed in a variety of goldfish tissues including ovary, testis, brain, pituitary, kidney and liver, suggesting a wide range of physiological roles for activin in the goldfish. We have also cloned a full length cDNA coding for the activin Type IIB receptor from the goldfish ovary, suggesting that activin may have paracrine or autocrine actions on the ovarian functions. The identity of the cloned receptor was confirmed by specific binding of125 I-activin on COS-1 cells transfected with the cloned Type IIB receptor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5168
    Keywords: serotonin ; gonadotropin ; growth hormone ; dopamine ; gonadotropin-releasing hormone ; serotonin receptors ; pituitary cells ; goldfish
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this study, the direct actions of serotonin (5HT) on gonadotropin (GTH)-II and growth hormone (GH) release in the goldfish were tested at the pituitary cell level. 5HT (10 nM - 10 µM) stimulated GTH-II but inhibited GH release from perifused goldfish pituitary cells in a dose-dependent manner. The minimal effective dose of 5HT tested to suppress basal GH secretion (10 nM) was 10-fold lower than that to stimulate GTH-II release (100 nM). The GTH-II releasing effect of 5HT was abolished by repeated 5HT treatment (10 µM) whereas the corresponding inhibition on GH release was unaffected. These results suggest that 5HT receptors on goldfish gonadotrophs and somatotrophs exhibit intrinsic differences in terms of sensitivity to stimulation and resistance to desensitization. Salmon GTH-releasing hormone (sGnRH, 100 nM) stimulated GTH-II and GH release from goldfish pituitary cells. The GTH-II releasing action of sGnRH was unaffected by simultaneous treatment of 5HT (1 µM). However, the corresponding GH response to sGnRH (100 nM) was inhibited. In the goldfish, dopamine is known to stimulate GH release through activation of pituitary D1 receptors. In the present study, the GH-releasing action of dopamine (1 µM) and the D1 agonist SKF38393 (1 µM) was significantly reduced by 5HT (1 µM). To examine the receptor specificity of 5HT action, the effects of 5HT1 and 5HT2 analogs on GTH-II and GH release were tested in goldfish pituitary cells. The 5HT1 agonist 8OH DPAT (0.1 and 1µM) and 5HT2 agonist α methyl 5HT (0.1 1µM) mimicked the GTH-II releasing effect of 5HT. The 5HT1 agonist 8OH DPAT (0.1 and 1µM) also stimulated GH release but the 5HT2 agonist α methyl 5HT (0.1 and 1µM) was inhibitory to basal GH secretion. In addition, 5HT (1µM) -stimulated GTH-II release was abolished by the 5HT1 antagonist methiothepin (10µM) and 5HT2 antagonist mianserin (10µM). Similarly, the inhibitory action of 5HT (1µM) on basal GH release was blocked by the 5HT2 antagonist mianserin (10µM). The 5HT1 antagonist methiothepin (10µM) was not effective in this regard. These results, taken together, indicate that 5HT exerts its regulatory actions on GTH-II and GH release in the goldfish directly at the pituitary cell level, probably through interactions with other regulators including sGnRH and dopamine. The GTH-II releasing action of 5HT is mediated through 5HT2 and possibly 5HT1 receptors. The inhibition of 5HT on basal GH release is mediated through 5HT2 receptors only. Apparently, 5HT1 receptors are not involved in this inhibitory action. In this study, a paradoxical stimulatory component of 5HT on GH release by activating 5HT1 receptors is also implicated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Reviews in fish biology and fisheries 7 (1997), S. 173-197 
    ISSN: 1573-5184
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This review summarizes the major neuroendocrine mechanisms regulating ovulation, thus providing a basis for understanding the various environmental and hormonal techniques for induction of ovulation of cultured teleosts. The secretion of gonadotrophin-ii(GtH-ii) is stimulated by gonadotrophin-releasing hormone (GnRH), and, although some teleosts have three different forms of GnRH regionally distributed in the brain, in most species investigated, only one form is present in the pituitary and apparently involved in GtH-ii secretion. In nearly all species investigated, dopamine (DA) inhibits GtH-ii secretion by direct actions on gonadotrophs, as well as by inhibition of GnRH release. Sex steroids act at both brain and pituitary levels to regulate GtH-ii secretion through a combination of positive and negative feedback actions; one important positive feedback action is that sex steroids enhance the responsiveness of the pituitary to GnRH and an important negative feedback action is to increase DA turnover, thereby increasing the overall DA inhibitory tone on GtH-ii secretion. The preovulatory surge of release of GtH-ii is stimulated by a surge release of GnRH. A decrease in DA turnover also occurs to disinhibit GnRH and GtH-ii release. Environmental factors including photoperiod, temperature and spawning substrate may cue ovulation and spawning. Social and pheromonal interactions play a very important role in synchronizing preovulatory endocrine changes, ovulation and spawning behaviour in many species. A widely used technique for inducing ovulation of cultured fishes is injection of the combination of a GnRH superactive analogue, to stimulate GtH-ii release, and a DA receptor antagonist, to block the inhibitory actions of DA. This is termed the Linpe technique and has proven particularly useful with those species having synchronous or group synchronous follicular development and a large preovulatory surge of GtH-ii. In other groups of teleosts, particularly those species having asynchronous ovarian development and multiple spawnings over an extended period, treatment with a sustained-release preparation of a GnRH superactive analogue to cause a prolonged, somewhat enhanced release of GtH-ii has proven highly successful in inducing multiple ovulations and spawnings. However, the lack of specific radioimmunoassays for GtH-ii in many of these species has hindered progress, as the precise pattern of GtH-ii release necessary for the recruitment of vitellogenic oocytes into final maturation and ovulation in these multiple spawners remains an intriguing neuroendocrine question
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...