Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 1262-1271 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The anisotropic distribution of turbulent kinetic energy in fully developed channel flows is examined by using an algebraic preclosure which relates the Reynolds stress to the mean field gradient and to a prestress correlation, (I[underaccent underbar-underbar [below]+τR∇〈u(underbar)〉)T⋅〈u(underbar)′u(underbar)′〉⋅(I[underaccent underbar-underbar [below]+τR∇〈u(underbar)〉)=τR2〈f(underbar)′f(underbar)′〉. Local fluctuations in the pressure field and in the instantaneous Reynolds stress are responsible for the prestress correlation τR2〈f(underbar)′f(underbar)′〉. Closure requires a phenomenological model for the anisotropic prestress 2kH[underaccent underbar-underbar [below], defined by 2kH[underaccent underbar-underbar [below]≡τR2〈f(underbar)′f(underbar)′〉−2αI[underaccent underbar-underbar [below]/3. The prestress coefficient α(=τR2〈f(underbar)′⋅f(underbar)′〉/2) depends algebraically on the components of the Reynolds stress, the mean velocity gradient, the relaxation time τR, and the turbulent kinetic energy k. Previously reported direct numerical simulations (DNS) results for fully developed channel flows (δ+=395) are used to evaluate the behavior of the Reynolds stress for an isotropic prestress (IPS) correlation (i.e., H[underaccent underbar-underbar [below]=O[underaccent underbar-underbar [below]). The IPS theory predicts the existence of a nonzero primary normal stress difference and shows that a significant transfer of kinetic energy occurs from the transverse and normal components of the Reynolds stress to the longitudinal component for τR||∇〈u(underbar)〉||(very-much-greater-than)1. The spatial distributions of the two nontrivial invariants of the anisotropic stress predicted by the IPS theory are consistent with DNS results for 10≤y+≤395. The practical utility of the isotropic prestress theory is further demonstrated by predicting the low-order statistical properties of the turbulence in the outer region of fully developed channel flows. Transport equations for the turbulent kinetic energy and the turbulent dissipation are used to estimate the spatial distributions of the turbulent time scales k/cursive-epsilon and τR. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The scalings of heat transport with safety factor (q), normalized collisionality (ν), plasma beta (β), and relative gyroradius (ρ*) have been measured on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)]. The measured ρ*, β and ν scalings of heat transport indicate that E×B transport from drift wave turbulence is a plausible basis for anomalous transport. For high confinement (H) mode plasmas where the safety factor was varied at fixed magnetic shear, the effective (or one-fluid) thermal diffusivity was found to scale like χeff∝q2.3±0.64 , with the ion and electron fluids having the same q scaling to within the experimental errors except near the plasma edge. The scaling of the thermal confinement time with safety factor was in good agreement with this local transport dependence, τth∝q−2.42±0.31 ; however, when the magnetic shear was allowed to vary to keep q0 fixed during the (edge) safety factor scan, a weaker global dependence was observed, τth∝q95−1.43±0.23. This weaker dependence was mainly due to the change in the local value of q between the two types of scans. The combined ρ*, β , ν and q scalings of heat transport for H-mode plasmas on DIII-D reproduce the empirical confinement scaling using physical (dimensional) parameters with the exception of weaker power degradation. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Profiles of the noninductive current, driven by direct electron absorption of fast waves in the ion cyclotron range of frequencies, have been determined for DIII-D tokamak discharges [Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. The results clearly indicate the presence of centrally peaked driven current and validate theoretical models of fast wave current drive. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 645-653 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An algebraic preclosure theory for the Reynolds stress 〈u′u′〉 is developed based on a smoothing approximation which compares the space–time relaxation of a convective-diffusive Green's function with the space–time relaxation of turbulent correlations. The formal preclosure theory relates the Reynolds stress to three distinct statistical properties of the flow: (1) a relaxation time τR associated with the temporal structure of the turbulence; (2) the spatial gradient of the mean field; and, (3) a prestress correlation related to fluctuations in the instantaneous Reynolds stress and the pressure field. Closure occurs by using an isotropic model for the prestress. For simple shear flows, the theory predicts the existence of a nonzero primary normal stress difference and an eddy viscosity coefficient which depends on the temporal relaxation of the turbulent structure and a characteristic time scale associated with the mean field. The asymptotic state of homogeneously sheared turbulence shows that τRS∼1, where S represents the mean shear rate. The Reynolds stress model and a set of recalibrated k−ε transport equations predict that the relaxation of homogeneously sheared turbulence to an asymptotic state requires development distances larger than 20 ×〈uz〉(0)/S, a theoretical result consistent with experimental observations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The scaling of cross-field heat transport with relative gyroradius ρ* was measured in low (L) and high (H) mode tokamak plasmas using the technique of dimensionally similar discharges. The relative gyroradius scalings of the electron and ion thermal diffusivities were determined separately using a two-fluid transport analysis. For L-mode plasmas, the electron diffusivity scaled as χe∝χBρ1.1±0.3* (gyro-Bohm-like) while the ion diffusivity scaled as χi∝χBρ−0.5±0.3* (worse than Bohm-like). The results were independent of the method of auxiliary heating (radio frequency or neutral beam). Since the electron and ion fluids had different gyroradius scalings, the effective diffusivity and global confinement time scalings were found to vary from gyro-Bohm-like to Bohm-like depending upon whether the electron or ion channel dominated the heat flux. This last property can explain the previously disparate results with dimensionally similar discharges on different fusion experiments that have been published. Experiments in H mode were also done with the expected values of beta, collisionality, safety factor, and plasma shape for thermonuclear ignition experiments. For these dimensionally similar discharges, both the electron and ion diffusivities scaled gyro-Bohm-like, χe, χi∝χBρ*, as did the global thermal confinement time. This leads to a very favorable prediction for the confinement time of future ignition devices. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] tokamak plasmas with an internal transport barrier (ITB), the comparison of gyrokinetic linear stability (GKS) predictions with experiments in both low and strong negative magnetic shear plasmas provide improved understanding for electron thermal transport within the plasma. Within a limited region just inside the ITB, the electron temperature gradient (ETG) modes appear to control the electron temperature gradient and, consequently, the electron thermal transport. The increase in the electron temperaturegradient with more strongly negative magnetic shear is consistent with the increase in the ETG mode marginal gradient. Closer to the magnetic axis the Te profile flattens and the ETG modes are predicted to be stable. With additional core electron heating, FIR scattering measurements near the axis show the presence of high k fluctuations (12 cm−1), rotating in the electron diamagnetic drift direction. This turbulence could impact electron transport and possibly also ion transport. Thermal diffusivities for electrons, and to a lesser degree ions, increase. The ETG mode can exist at this wave number, but it is computed to be robustly stable near the axis. Consequently, in the plasmas we have examined, calculations of drift wave linear stability do not explain the observed transport near the axis in plasmas with or without additional electron heating, and there are probably other processes controling transport in this region. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 909-921 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The scaling of heat transport with collisionality (ν) in the banana regime has been measured in both L-mode (low confinement) and H-mode (high confinement) plasmas on the DIII-D tokamak [Fusion Technol. 8, 441 (1985)] with the other dimensionless parameters held fixed. Understanding the collisionality scaling of heat transport helps to distinguish between the different proposed mechanisms of turbulent transport and allows the origin of power degradation and density scaling of confinement to be determined. For L-mode plasmas on DIII-D, the scaling of the effective (or one-fluid) thermal diffusivity with collisionality is close to zero at all radii, χeff∝χBν−0.08±0.10, which is the expected scaling for the collisionless ion temperature gradient (ITG) and collisionless trapped electron modes. The ion and electron thermal diffusivities have the same collisionality scaling to within the experimental error. For H-mode plasmas, a stronger collisionality dependence of heat transport is observed, χeff∝χBν0.49±0.08 for a factor-of-8 scan in ν, which falls between the expected scalings of the collisionless ITG and collisionless trapped electron modes and that of the (edge) resistive ballooning mode. A portion of this H-mode collisionality scaling can be attributed to the ν dependence of neoclassical heat transport, especially in low collisionality regions of the plasma. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have been produced by combining the benefits of a hollow or weakly sheared central current profile [Phys. Plasmas 3, 1983 (1996)] with a high confinement (H mode) edge. In these discharges, low-power neutral beam injection heats the electrons during the initial current ramp, and "freezes in" a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L mode) to high (H mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high-performance phase is terminated nondisruptively at much higher βT (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang–Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E×B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium–tritium (DT) fuel mixture indicates that such plasmas could produce a DT fusion gain QDT=0.32. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 1225-1228 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A new reflectometer system designed to monitor density fluctuations associated with rf waves has been successfully demonstrated on the DIII-D tokamak. It is a direct, internal, and nonperturbing diagnostic with access into the plasma core. This new diagnostic is motivated by a desire to improve understanding of rf wave physics issues, such as wave trajectory, heating mechanisms, rf wave deposition profile, and wave number, and is highly relevant to planned tokamaks such as ITER and TPX. This work is the first application of reflectometry to rf wave studies in a tokamak. Feedforward tracking receiver techniques are employed to remove frequency instabilities due to inherent drifts in the microwave sources and frequency pulling. In order to minimize spurious pickup of the rf pulse (∼60 MHz), heterodyne detection techniques are utilized, and all components are installed inside an rf shielding box. The system operates in the extraordinary mode (X-mode) at 70 GHz. In this paper, a detailed description of the system, and data illustrating its successful operation will be presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A new reflectometer system designed to monitor density fluctuations associated with rf waves has been successfully demonstrated on the DIII-D tokamak. It is a direct, internal, and nonperturbing diagnostic with access into the plasma core. This new diagnostic is motivated by a desire to improve understanding of rf wave physics issues, such as wave trajectory, heating mechanisms, rf wave deposition profile, and wave number, and is highly relevant to planned tokamaks such as ITER and TPX. This work is the first application of reflectometry to rf wave studies in a tokamak. Feedforward tracking receiver techniques are employed to remove frequency instabilities due to inherent drifts in the microwave sources and frequency pulling. In order to minimize spurious pickup of the rf pulse (∼60 MHz), heterodyne detection techniques are utilized, and all components are installed inside an rf shielding box. The system operates in the extraordinary mode (X mode) at 70 GHz. In this paper, a detailed description of the system, and data illustrating its successful operation will be presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...