Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 3003-3010 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Significant large-scale modification of the surface of Al–Si conductors was observed, due to electromigration in wide lines and under low stress conditions. After electromigration stressing the Al layers showed local thickness variations, i.e., damage by thinning. The mechanism underlying this damage causes substantial metal transport. Nevertheless, damage by thinning has received little attention in the past. Thinning was observed: (1) in a number of different alloys (Al–Si, Al–Cu, Al–Si–V, and Al–Si–V–Pd), (2) with a number of different underlayers [SiO2, W–Ti (no vacuum break after Al deposition) and W–Ti (oxidized surface before Al deposition)], (3) over an extended temperature range, (4) over a range of current density, and (5) in structures with and without passivation. The results show that thinning is a general phenomenon. An activation energy of approximately 0.5 eV was determined for the temperature dependence of a combined mechanism of concurrent thinning plus voiding in Al99Si1. Several alternatives are examined to explain the observations, namely mass movement along dislocations, Al bulk diffusion, and diffusion at the interface between the Al and its oxide. It is shown that diffusion at the Al/Al oxide interface most probably plays an important role in the damage mechanism, even under stress conditions where grain boundary diffusion is traditionally thought to dominate. Results also showed that alloying of Al with Pd can reduce the effects of damage by thinning. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 8981-8994 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The resonance Raman spectrum of InP nanocrystals is characterized by features ascribable to both longitudinal (LO) and transverse (TO) optical modes. The intensity ratio of these modes exhibits a strong size dependence. To calculate the size dependence of the LO and TO Raman cross sections, we combine existing models of Raman scattering, the size dependence of electronic and vibrational structure, and electron vibration coupling in solids. For nanocrystals with a radius 〉10 Å, both the LO and TO coupling strengths increase with increasing radius. This, together with an experimentally observed increase in the electronic dephasing rate with decreasing size, allows us to account for the observed ratio of LO/TO Raman intensities. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 7957-7963 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report here on the size-dependent kinetics of exciton recombination in a III–V quantum dot system, InP. The measurements reported include various frequency dependent quantum yields as a function of temperature, frequency dependent luminescence decay curves, and time-gated emission spectra. This data is fit to a three-state quantum model which has been previously utilized to explain photophysical phenomena in II–VI quantum dots. The initial photoexcitation is assumed to place an electron in a (delocalized) bulk conduction band state. Activation barriers for trapping and detrapping of the electron to surface states, as well as activation barriers for surface-state radiationless relaxation processes are measured as a function of particle size. The energy barrier to detrapping is found to be the major factor limiting room temperature band-edge luminescence. This barrier increases with decreasing particle size. For 30 A(ring) particles, this barrier is found to be greater than 6 kJ/mol—a barrier which is more than an order of magnitude larger than that previously found for 32 A(ring) CdS nanocrystals. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...