Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • 1985-1989  (1)
  • Insulin receptor  (2)
  • ABRM  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 48 (1992), S. 448-456 
    ISSN: 1420-9071
    Keywords: Neuropeptide ; Mollusca ; ABRM ; Mytilus ; Achatina ; Helix ; d-amino acid residue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A number of neuropeptides were isolated from the ganglia and muscles of molluscs, and their actions were examined. Diverse neuropeptides, in addition to several classical neurotransmitters, were suggested to be involved in the regulation of the anterior byssus retractor muscle ofMytilus. A wide structural variety of members of theMytilus inhibitory peptide family was observed in each of the generaMytilus, Achatina andHelix. Gly-Trp-NH2, the C-terminal dipeptide fragment of the neuropeptide AGPWamide, showed a more potent action than the parent peptide in all of the muscles examined. Peptides related to some molluscan neuropeptides were found to be distributed interphyletically. Some neuropeptides containing ad-amino acid residue were found inAchatina andMytilus. These aspects of molluscan neuropeptides are thought not to be exceptional.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Insulin receptor ; mutation ; tyrosine kinase activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We evaluated a 35-year-old diabetic male patient with type A insulin resistance, showing acanthosis nigricans. Insulin binding to the patient's Epstein-Barr-virus transformed lymphocytes was mildly reduced. The maximal insulin-stimulated autophosphorylation of the insulin receptor from the patient's transformed lymphocytes was decreased to 45% of that from the control subjects. On examination, the biological activities of insulin and insulin-like growth factor I in the patient's cultured fibroblasts, insulin sensitivity of amino isobutyric acid uptake and thymidine incorporation was decreased, but insulin-like growth factor I action was normal. The sequence analysis of amplified genomic DNA revealed that the patient was heterozygous for a mutation substituting Leu for Trp at codon 1193 in exon 20 of the insulin receptor gene. The patient's mother and sister were also heterozygous for a mutation in the insulin receptor gene that substituted Leu for Trp1193 in the Β subunit of the receptor. Therefore, the mutation causes insulin resistance in a dominant fashion. They were less hyperglycaemic and more hyperinsulinaemic than the proband after glucose loading. The mother had diabetes mellitus but did not show acanthosis nigricans, while the sister did not have diabetes and showed acanthosis nigricans. These results suggest that this mutation causes defective tyrosine kinase activity of the insulin receptor, which results in insulin resistance. Insulin action and phenotypic appearance may be mediated by different factors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Insulin receptor ; insulin proreceptor ; insulin resistance ; transformed lymphocytes ; point mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An alteration of an amino acid sequence in the processing site of the insulin proreceptor by a point mutation of the insulin receptor gene produced extreme insulin resistance. We characterized functional properties of the unprocessed insulin receptor in transformed lymphocytes from a patient. Insulin binding to intact cells and to a partially purified insulin receptor preparation was radically decreased to 20% and 18% of the control values, respectively. In competitive insulin binding to intact cells, [LeuA3]-, [LeuB24]-, [SerB24-insulin, and mini-proinsulin ([B(1–29)-Ala-Ala-Lys-A(1–21)]-insulin) had the same relative binding activity in both the patient's and the control cells, but proinsulin and IGF-I were markedly less able to displace 125I-insulin in the patient's cells. In contrast to the study in intact cells, proinsulin and IGF-I as well as other insulin analogues had the same relative binding activity to bind to the partially lectin-purified insulin receptor preparations from both the patient's and the control cells. As regards the signal transduction after receptor binding, insulin-stimulated autophosphorylation of the unprocessed insulin proreceptor occurred proportionally to the amount of decreased insulin binding. With 0.025% trypsin treatment, the abnormal binding characteristics and autophosphorylation were normalized through conversion to functionally normal receptors. In spite of the abnormal processing, self-association of receptors into oligomeric structures was observed in the proreceptor. These results suggest that the unprocessed insulin proreceptor in the plasma membranes has an altered conformation which affects its binding characteristics but not its intramolecular signal transmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...