Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Type 1 (insulin-dependent) diabetes mellitus ; HDL cholesterol ; apolipoprotein A-I ; apolipoprotein A-II ; kinetic analyses ; VLDL triglyceride ; lipolytic enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Concentrations of HDL cholesterol and apolipoprotein A-I are commonly increased in Type 1 (insul-independent) diabetes mellitus but the mechanisms whereby diabetes influences HDL metabolism have not been studied. We investigated the metabolism of HDL apoproteins A-I and II in normolipidaemic Type 1 diabetic men (n=17, HbA1 6.4–11.9%) without microalbuminuria but with a wide range of HDL cholesterol (0.85–2.10 mmol/l) and in nondiabetic men (n=18) matched for body mass index and the range of HDL cholesterol. Input rates and fractional catabolic rates for apolipoproteins A-I and II were determined following injection of 125I-apolipoprotein A-I and 131I-apolipoprotein A-II tracers. Additional multicompartmental analysis was performed using a model to describe the kinetics of HDL particles containing only apolipoprotein A-I (Lp A-I) and apolipoprotein A-I and apolipoprotein A-II (Lp A-I/ A-II). No gross differences from normal subjects were observed in the mean levels of lipids, lipoproteins, apoproteins and the lipolytic enzymes in the diabetic men as a result of the selection process. Furthermore, the relationship between apolipoprotein A kinetics and plasma HDL cholesterol levels appeared to be preserved in the diabetic group. However, some normal interrelationships were disrupted in the diabetic men. Firstly, the rate of apolipoprotein A-II synthesis was 22% lower than in control subjects (p〈0.05). Modelling indicated that this was due to decreased input of Lp A-I/A-II particles whereas the input of Lp A-I particles was similar in the two groups. Secondly, there was no correlation between VLDL triglyceride and HDL cholesterol or VLDL triglyceride and the fractional catabolic rate of apolipoproteins A-I and A-II in diabetic men in contrast to that seen in control subjects. We conclude that there is a disruption in the normal association between VLDL and HDL metabolism in Type 1 diabetic men and postulate that the observed differences may be due to the therapeutic use of exogenous insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 66 (1988), S. 703-712 
    ISSN: 1432-1440
    Keywords: VLDL-LDL conversion in normal and hyperlipoproteinaemic subjects ; Multicompartmental modelling ; Metabolic channelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The human plasma lipoproteins encompass a broad spectrum of particles of widely varying physical and chemical properties whose metabolism is directed by their protein components. Apolipoprotein B100 (apo B100) is the major structural protein resident in particles within the Svedberg flotation range 0–400. The largest of these, the very low density lipoprotein (VLDL), rich in triglyceride, are metabolised by sequential delipidation through a transient intermediate density lipoprotein (IDL) to cholesterol-rich low density lipoproteins (LDL). Several components contribute to the regulation of this process, including (a) the lipolytic enzymes lipoprotein lipase and hepatic lipase (b), apolipoproteins B, CII, CIII and E, and (c) the apolipoprotein B/E or LDL receptor. Lipoprotein lipase acts primarily on large VLDL of Sf 60–400. Hepatic lipase on the other hand seems to be critical for the conversion of smaller particles (Sf 12–60) to LDL (Sf 0–12). Although most apo B100 flux is directed to the production of the delipidation end product LDL, along the length of the cascade there is potential for direct removal of particles from the system, probably via the actions of cell membrane receptors. This alternative pathway is particularly evident in hypertriglyceridaemic subjects, in whom the delipidation process is retarded. VLDL metabolism shows inter subject variability even in normal individuals. In this regard, apolipoprotein E plays an important role. Normolipidaemic individuals homozygous for the apo E2 variant exhibit gross disturbances in the transit of B protein through the VLDL-IDL-LDL chain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...