Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Myenteric plexus ; Intestine, small ; Neurons ; Enteric nervous system ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Two techniques that are thought to stain all of the neurons in the myenteric ganglia of the intestine are NADH diaphorase histochemistry and immunhistochemistry using a “nerve cell body” antiserum. However, this assumption has never been directly verified. In the present study myenteric ganglia of the guinea-pig ileum were prepared as whole-mounts and stained with either of these techniques. All nerve cells that could be identified in the whole-mounts were counted. The whole-mounts were then embedded flat in resin and serially sectioned at 1 μm. Nerve cells were identified and counted from the serial sections, and the data compared to those obtained from the whole-mounts. NADH diaphorase histochemistry did not reveal all the neurons at incubation times that gave selective staining. In contrast, “nerve cell body” antiserum stained the entire neuronal population. To determine the total number of nerve cell bodies/ganglion and the proportion of nerve cell bodies with calbindin immunoreactivity, whole-mounts that had been processed for calbindin immunohistochemistry were serially sectioned and reconstructed. The total number of neurons per myenteric ganglion was 105±10 (SE). Calbindin-immunoreactive neurons comprised about 20% of the myenteric neurons, which is considerably less than previous estimates, because previously the total population has been underestimated. The spatial density of myenteric neurons in the undistended ileum of the guinea-pig is 17300 nerve cells/cm2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Myenteric plexus ; Enteric nervous system ; Intestine, small ; Ultrastructure ; Innervation, of intestinal muscle ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The tertiary component of the myenteric plexus consists of interlacing fine nerve fibre bundles that run between its principal ganglia and connecting nerve strands. It was revealed by zinc iodide-osmium impregnation and substance P immunohistochemistry at the light-microscope level. The plexus was situated against the inner face of the longitudinal muscle and was present along the length of the small intestine at a density that did not vary markedly from proximal to distal. Nerve bundles did not appear to be present in the longitudinal muscle as judged by light microscopy, although numberous fibre bundles were encountered within the circular muscle layer. At the ultrastructural level, nerve fibre bundles of the tertiary plexus were found in grooves formed by the innermost layer of longitudinal smooth muscle cells. In the distal parts of the small intestine, some of these nerve fibre bundles occasionally penetrated the longitudinal muscle coat. Vesiculated profiles in nerve fibre bundles of the tertiary plexus contained variable proportions of small clear and large granular vesicles; they often approached to within 50–200 nm of the longitudinal smooth muscle cells. Fibroblast-like cells lay between strands of the tertiary plexus and the circular muscle but were never intercalated between nerve fibre varicosities and the longitudinal muscle. These anatomical relationships are consistent with the tertiary plexus being the major site of neurotransmission to the longitudinal muscle of the guinea-pig small intestine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...