Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • After-hyperpolarization  (1)
  • Chemical coding  (1)
  • 1
    ISSN: 1432-2013
    Keywords: Potassium channels ; Enteric nervous system ; After-hyperpolarization ; Toxins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Myenteric neurons of guinea-pig ileum were studied with intracellular microelectrodes. The specific toxins charybdotoxin, iberiotoxin and apamin were used to characterize the prolonged after-hyperpolarizations of AH neurons in this preparation. Charybdotoxin and iberiotoxin blocked prolonged after-hyperpolarizations in 23 of 24 AH neurons, but apamin had no effect on 5 of 5 AH neurons. Abolition of the after-hyperpolarizations was accompanied by depolarization and increases in input resistances of those AH neurons affected, but the shapes of action potentials were unchanged. The excitability of the AH neurons was enhanced as shown by an increase in the number of action potentials evoked by a 500-ms depolarizing current pulse or by a train of 15 ms depolarizing current pulses (10Hz). The other class of myenteric neurons, S neurons, was also investigated. The 19 S neurons studied fired action potentials only at the start of a 500 ms depolarization, but the toxins had no effect on this behaviour or on their other properties. Intracellular injection of Neurobiotin into the neurons studied and subsequent immunohistochemical staining to localise the calcium-binding protein, calretinin, indicated that all major classes of S neurons were included in the sample. Thus, the prolonged after-hyperpolarizations in AH neurons may be due to opening of a large-conductance (BK) calcium-dependent potassium channel, but similar channels play little or no role in regulation of the excitability of S neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Caecum ; Neurochemistry ; Neuropeptides ; Nitric oxide synthase ; Chemical coding ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present work was undertaken to determine by immunocytochemical methods which of the putative enteric neurotransmitters are contained in axons supplying the guinea-pig taenia coli and what proportion of axons is accounted for by the presence of these substances. Numerous fibres displayed immunoreactivity for dynorphin (DYN), enkephalin (ENK), γ-aminobutyric acid (GABA), nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP), but, in contrast to other gut regions, fibres showing immunoreactivity for gastrin-releasing peptide, galanin and neuropeptide Y were rare in the taenia. Fibres reactive for calbindin, calcitonin gene-related peptide, cholecystokinin, 5-hydroxytryptamine and somatostatin were also rare. Tyrosine hydroxylase-like immunoreactivity (TH-LI) was present in numerous fibres that disappeared after extrinsic denervation, a procedure that did not detectably affect any of the other major groups of fibres. Simultaneous staining of extrinsically denervated preparations revealed that SP-LI and VIP-LI were located in separate fibres, and ultrastructural studies showed these to be 58% and 33% of intrinsic fibres supplying the muscle. Immunoreactivity for the general marker, neuron-specific enolase, was located in 95–98% of axons. ENK-LI and DYN-LI were in the same axons, and similar proportions of the fibres with either SP-LI or VIP-LI, about 85%, contained immunoreactivity for ENK and DYN. All VIP-LI fibres, but no SP-LI fibres, were reactive for NOS. The results imply that the taenia of the guinea-pig caecum is innervated by two major groups of enteric neurons: (i) excitatory neurons that contain ACh, SP, other tachykinins, and, in most cases, DYN-LI and ENK-LI; and (ii) inhibitory neurons that contain NOS-LI, VIP-LI, in most cases, the two opioids and, quite probably, ATP as a transmitter. GABA-LI is contained in a smaller population of intrinsic axons. Even though the taenia represents one of the simplest tissues for examining transmission from enteric neurons to intestinal muscle, it shares some of the complexity of other regions, in that four major axon types supply the muscle and both the enteric excitatory and enteric inhibitory neurons contain multiple transmitters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...