Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • Basal ganglia  (1)
  • Ketamine anesthesia  (1)
  • Rat  (1)
  • 1
    ISSN: 1432-1106
    Keywords: Swallowing ; Nucleus tractus solitarius ; Excitatory amino acids ; Ketamine anesthesia ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Swallowing is a patterned motor activity generated by neurons located within the nucleus tractus solitarius (NTS). An excitatory amino acid (EAA) neurotransmitter, such as glutamate (GLU), is suspected of being involved in the initiation of swallowing by NTS neuronal components. However, swallowing can still be elicited in animals anesthetized with ketamine, an antagonist of the N-methyl-D-aspartate (NMDA) subclass of EAA receptors. The present experiments were therefore designed to investigate the influence of EAA administration within the NTS on the swallowing motor acitivity of rats anesthetized with ketamine. Pressure microinjections of GLU in doses ranging from 25 to 500 pmol elicited swallowing. This effect was dose-dependent and was not reproduced when control injections of the vehicle solution were performed. Microinjections of the GLU agonists, quisqualate (QUIS) and NMDA, in doses ranging between 2.5 and 50 pmol, also induced swallowing motor activities. QUIS, like GLU, elicited a short series of swallows at a brief latency while NMDA generated long-lasting rhythmic swallowing with a longer latency. Swallowing induced by GLU microinjections (100 pmol) was suppressed almost completely by local pretreatment with either the broad spectrum EAA receptor antagonist, gamma-D-glutamylglycine (250 pmol), or the more selective non-NMDA antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (50–100 pmol), but not by pretreatment with the selective NMDA antagonist, DL-2-amino-5-phosponovalerate (250 pmol). On the other hand, pretreatment with DL-2-amino-5-phosphonovalerate (50 pmol) suppressed the deglutitions induced by NMDA microinjections (10 pmol) but not those elicited by QUIS microinjections (10 pmol). These results provide evidence that swallowing can be induced by activation of EAA receptors of both the NMDA and the non-NMDA subclasses located within the NTS. Furthermore they indicate that both subclasses may still be active in ketamine-anesthetized animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1459
    Keywords: Progressive supranuclear palsy ; Basal ganglia ; Metabolism ; Positron emission tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Regional cerebral glucose metabolism was studied in nine patients with progressive supranuclear palsy (PSP). (18F)-2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) revealed general cerebral hypometabolism in all PSP patients in comparison with an age-matched reference group. When comparing the degree of regional metabolic deterioration, a consistent pattern of the most affected brain regions became obvious: the strongest significant alteration of cerebral glucose metabolism was observed in subcortical regions, e.g. in caudate nucleus, lentiform nucleus and upper mid-brain, which showed nerve cell loss in previous pathological studies. Less severe, but still significant hypometabolism was observed in frontal cortex. This pattern of hypometabolism was distinctly different from that typically seen in dementias of Alzheimer's type. The present data show that PET findings agree with histopathological studies: PSP is a primarily subcortical disease with secondary inactivation of cortical, especially of frontal brain regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...