Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (7)
  • Ultrastructure  (4)
  • Nicotiana  (2)
  • Cytoskeleton  (1)
  • Impatiens sultani
  • 1
    ISSN: 1432-2048
    Keywords: Kinesin ; Nicotiana ; Organelle movement ; Pollen tube
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In plant cells, microtubule-based motor proteins have not been characterized to the same degree as in animal cells; therefore, it is not yet clear whether the movement of organelles and vesicles is also dependent on the microtubular cytoskeleton. In this work the kinesinimmunoreactive homologue from pollen tubes of Nicotiana tabacum L. has been purified and biochemically characterized. The protein preparation mainly contained a polypeptide with a relative molecular weight of approx. 100 kDa. This polypeptide bound to animal microtubules in an ATP-dependent manner and it further copurified with an ATPase activity fourfold-stimulated by the presence of microtubules. In addition, the sedimentation coefficient (approx. 9S) was similar to those previously shown for other kinesins. Immunofluorescence analyses revealed a partial co-distribution of the protein with microtubules in the pollen tube. These data clearly indicate that several properties of the kinesin-immunoreactive homologue are similar to those of kinesin proteins, and suggest that molecular mechanisms analogous to those of animal cells may drive the microtubule-based motility of organelles and vesicles in plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 28-35 
    ISSN: 1432-2145
    Keywords: Tapetal cells ; Brassica oleracea L ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 4 (1991), S. 176-181 
    ISSN: 1432-2145
    Keywords: Pollen ; Brassica napus ; Mitoses ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Brassica napus pollen development during the formation of the generative cell and sperm cells is analysed with light and electron microscopy. The generative cell is formed as a small lenticular cell attached to the intine, as a result of the unequal first mitosis. After detaching itself from the intine, the generative cell becomes spherical, and its wall morphology changes. Simultaneously, the vegetative nucleus enlarges, becomes euchromatic and forms a large nucleolus. In addition, the cytoplasm of the vegetative cell develops a complex ultrastructure that is characterized by an extensive RER organized in stacks, numerous dictyosomes and Golgi vesicles and a large quantity of lipid bodies. Microbodies, which are present at the mature stage, are not yet formed. The generative cell undergoes an equal division which results in two spindle-shaped sperm cells. This cell division occurs through the concerted action of cell constriction and cell plate formation. The two sperm cells remain enveloped within one continuous vegetative plasma membrane. One sperm cell becomes anchored onto the vegetative nucleus by a long extension enclosed within a deep invagination of the vegetative nucleus. Plastid inheritance appears to be strictly maternal since the sperm cells do not contain plastids; plastids are excluded from the generative cell even in the first mitosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 5 (1992), S. 64-71 
    ISSN: 1432-2145
    Keywords: Generative cell ; Isolation ; Microtubules ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Upon squashing of the pollen grain, the isolated generative cell ofNicotiana tabacum looses its spindle shape to become spherical; this phenomenon is independent of the sucrose concentration used. The time necessary for this change can vary from 1 min (0% sucrose) to 20 min (30% sucrose). The microtubular cytoskeleton was studied by means of immunofluorescence and electron microscopy. Just after isolation, 5 to 15 clearly visible bundles in microtubules organized in a basket-like structure are present. After 15 min in medium with 15% sucrose, the microtubular cytoskeleton disappears, and a diffusely spread tubulin can be observed. Neither the addition of 10–20 μM taxol to the medium, nor the omission of Ca2+ to the medium has any effect on the changes in cell shape and loss of microtubular bundles after isolation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2145
    Keywords: Female germ unit ; Nicotiana ; Megagametophyte ; Organelle movement ; Video microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Living embryo sacs and megagametophytic cells of Nicotiana alata and Nicotiana tabacum were obtained using enzymatic maceration and microdissection. The yields of isolated embryo sacs, egg apparatus and central cells were up to 35%, 40% and 35%, respectively. Vectorial movement of organelles and undulations of tubular structures, presumably endoplasmic reticulum, were observed in eggs, synergids and central cells using video-enhanced microscopy. Despite evident viability using the fluorochromatic reaction, the egg displays much less organelle movement and therefore appears to be quiescent. The large vacuole of the central cell is traversed by mobile strands of cytoplasm through which organelles migrate. A polygonal network is located at the periphery of the central cell, which may contribute to anchorage of the cell with the embryo-sac wall. The observation of organelle movement provides direct evidence of the condition of the cell and may be a useful approach for assessing cell vigor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 154 (1990), S. 151-156 
    ISSN: 1615-6102
    Keywords: Cytoskeleton ; Male gamete ; Motility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microtubules tightly cross-linked into bundles are described in the sperm cells ofBrassica oleracea pollen tubes. The sperm cells are lobed and “tailed” and the microtubule bundles are often located in these parts of the cells. In the present paper we suggest that the cross-linked microtubule organization could determine an intertubular sliding, probably generating a motility system that propels the sperm cells through the tube.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 172 (1993), S. 77-83 
    ISSN: 1615-6102
    Keywords: Ornithogalum virens ; Generative cell ; Mitosis ; Pollen ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ornithogalum virens is a bicellular pollen species. In mature pollen, the generative nucleus is at advanced prophase. Mitosis of the generative cell is resumed just after pollen rehydration and prometaphase occurs within 10 min of germination. Prometaphase is manifested by nuclear envelope breakdown and the appearance of spindle microtubules in the nucleoplasm region. At this stage the number of cytoplasmic microtubules located in the generative cell periphery appears to decrease. Endoplasmic reticulum-like cisternae originating from the nuclear envelope tend to be spaced around the chromosomes, outside the area of the forming mitotic spindle. Some also begin to penetrate the spindle area. The results are discussed in terms of the generative cell cycle in bicellular pollen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...