Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 8 (1992), S. 291-297 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biotechnology progress 10 (1994), S. 403-409 
    ISSN: 1520-6033
    Source: ACS Legacy Archives
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 672 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-203X
    Keywords: Ajmalicine ; Carbon dioxide ; Ethylene ; Bioreactor ; Catharanthus roseus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Removal of gaseous metabolites in an aerated fermenter affects ajmalicine production by Catharanthus roseus negatively. Therefore, the role of CO2 and ethylene in ajmalicine production by C. roseus was investigated in 3 l fermenters (working volume 1.8 l) with recirculation of a large part of the exhaust air. Removal of CO2, ethylene or both from the recirculation stream did not have an effect on ajmalicine production. Inhibition of ethylene biosynthesis in shake flasks with Co2+, Ni2+ or aminooxyacetic acid did not affect ajmalicine production. However, the removal of CO2 did enhance the amount of extracellular ajmalicine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 60 (1991), S. 235-256 
    ISSN: 1572-9699
    Keywords: biomass yield ; chemotrophic growth ; Gibbsenergy dissipation ; thermodynamic efficiencies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new, generally applicable, thermodynamically based method is proposed to provide an estimation of the biomass yield on arbitrary organic and inorganic substrates. Aerobic, anaerobic, denitrifying growth systems with and without reversed electrontransport are covered. The biomass yield can be estimated with only 15% error in a very wide range of microbial growth systems and biomass yields (0.01–0.80 C-mol/(C)-mol). This method is based on the use of ‘Gibbs energy dissipared per C-mol produced biomass’ (designated as D infS sup01 /rAx) as the central parameter. Moreover the insufficiency of other methods based on YATP, YAve, ŋ0, YC and enthalpy or Gibbs energy efficiencies is shortly discussed. Also it appeared to be possible to understand the obtained correlation of D infS sup01 /rAx in general biochemical terms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5044
    Keywords: Ajmalicine ; bioreactor ; Catharanthus roseus ; growth model ; scale-up
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 603-618 
    ISSN: 0006-3592
    Keywords: black box description ; metabolic description ; metabolic constraints ; conservation constraints ; linear relation ; Herbert-Pirt relation ; reaction systems ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In microbial reaction systems, there are a number of linear relations among net conversion rates. These can be very useful in the analysis of experimental data. This article provides a general approach for the formation and application of the linear relations. Two type of system descriptions, one considering the biomass as a black box and the other based on metabolic pathways, are encountered. These are defined in a linear vector and matrix algebra framework. A correct a priori description can be obtained by three useful tests: the independency, consistency, and observability tests. The independency are different. The black box approach provides only conservations relations. They are derived from element, electrical charge, energy, and Gibbs energy balances. The metabolic approach provides, in addition to the conservation relations, metabolic and reaction relations. These result from component, energy, and Gibbs energy balances. Thus it is more attractive to use the metabolic description than the black box approach. A number of different types of linear relations given in the literature are reviewed. They are classified according to the different categories that result from the black box or the metabolic system description. Validation of hypotheses related to metabolic pathways can be supported by experimental validation of the linear metabolic relations. However, definite proof from biochemical evidence remains indispensable.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 833-858 
    ISSN: 0006-3592
    Keywords: biomass yield ; chemotrophic growth ; Gibbs energy dissipation ; thermodynamic efficiencies ; energy convertor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Correlations for the prediction of biomass yields are valuable, and many proposals based on a number of parameters (YATP, YAve, ηo, Yc, Gibbs energy efficiencies, and enthalpy efficiencies) have been published. This article critically examines the properties of the proposed parameters with respect to the general applicability to chemotrophic growth systems, a clear relation to the Second Law of Thermodynamics, the absence of intrinsic problems, and a requirement of only black box information. It appears that none of the proposed parameters satisfies all these requirements. Particularly, the various energetic efficiency parameters suffer from major intrinsic problems. However, this article will show that the Gibbs energy dissipation per amount of produced biomass (kJ/C-mod) is a parameter which satisfies the requirements without having intrinsic problems. A simple correlation is found which provides the Gibbs energy dissipation/C-mol biomass as a function of the nature of the C-source (expressed as the carbon chain length and the degree of reduction). This dissipation appears to be nearly independent of the nature of the electron acceptor (e.g., O2, No3-, fermentation). Hence, a single correlation can describe a very wide range of microbial growth systems. In this respect, Gibbs energy dissipation is much more useful than heat production/C-mol biomass, which is strongly dependent on the electron acceptor used. Evidence is presented that even a net heat-uptake can occur in certain growth systems.The correlation of Gibbs energy dissipation thus obtained shows that dissipation/C-mol biomass increases for C-sources with smaller chain length (C6 → C1), and increases for both higher and lower degrees of reduction than 4. It appears that the dissipation/C-mol biomass can be regarded as a simple thermodynamic measure of the amount of biochemical “work” required to convert the carbon source into biomass by the proper irreversible carbon-carbon coupling and oxidation/reduction reactions. This is supported by the good correlation between the theoretical ATP requirement for biomass formation on different C-sources and the dissipation values (kJ/C-mol biomass) found. The established correlation for the Gibbs energy dissipation allows the prediction of the chemotrophic biomass yield on substrate with an error of 13% in the yield range 0.01 to 0.80 C-mol biomass/(C)-mol substrate for aerobic/anaerobic/denitrifying growth systems.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 1069-1079 
    ISSN: 0006-3592
    Keywords: carbon dioxide ; bicarbonate ; alkalophilic cultures ; nonideal solutions ; continuous culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The chemical reactions involving carbon dioxide in mineral culture media are considered. A mathematic model is set up, based on published data, which is valid at pH values below 9, and in which the nonideality of the solution is taken into account. The crucial parameter is the constant expressing the equilibrium between carbon dioxide and bicarbonate, K1.The reactions were studied in three different aqueous solutions: water, mineral salt medium, and a suspension with nongrowing bacterial cells. For each situation, three methods were compared for the determination of the bicarbonate concentration in the solution: equilibrium state total carbon analysis, dynamic monitoring of the rate of acid or alkali addition, and dynamic measurement of the carbon dioxide gas phase mole fraction.In a batch-stirred tank reactor, the equilibrium constant K1 agreed with the published value, and the three bicarbonate analysis methods give the same results. If the nonideality is not taken into account, the result significantly differed from the published value and is likely to be incorrect.A real alkalophilic process, using Acinetobacter calcoaceticus in a continuous stirred tank reactor at steady state, also gave results that are in accord with the literature. However, the results do not allow validation of the equation expressing the nonideality.The steady state in the batch system and in continuous culture can be well described with the mathematical model. However, in the transient state there are some unexplained differences between simulation and measurement.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 771-780 
    ISSN: 0006-3592
    Keywords: Catharanthus roseus ; glucose limitation ; growth kinetics ; phosphate limitation ; plant cell suspension culture ; structured growth model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The growth of plant cell suspension cultures of Catharanthus roseus in batch fermentors was studied at different initial phosphate levels of the medium. On the basis of the observations and existing knowledge with respect to phosphate metabolism in cultured C. roseus cells, a structured mathematical model was developed for the description of the kinetics of growth and intracellular accumulation of glucose and phosphate, as a function of glucose and phosphate supply. It was shown that the model offers not only good description of the growth of the cells in batch culture at different initial phosphate levels, but also provided a satisfactory description of the growth in glucose limited chemostats. © 1993 Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...