Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • phosphate rock  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 123 (1990), S. 51-58 
    ISSN: 1573-5036
    Keywords: millet ; Niger ; partially acidulated phosphate rock ; phosphorus placement ; phosphate rock ; tillage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Farmers in Niger generally do not plow their fields and are therefore unable to incorporate phosphate. Experiments were conducted in Niger to assess the effect of soil tillage, P source, and fertilizer placement on yields of pearl millet (Pennisetum glaucum [L.] R. Br.). Treatments included single superphosphate (SSP) or ground Tahoua phosphate rock (PRT) incorporated into the soil during tillage or SSP surface applied after tillage. In plots which were not tilled, P sources (SSP, PRT, and PAPR-partially acidulated rock) were broadcast on the soil surface with no incorporation. In order to improve P efficiency under zero tillage, P was point placed in the soil near the plant with either broadcast or point-placed urea. Treatments in which tillage was used showed a slight though nonsignificant yield increase over untilled plots. The yield increase did not appear to be due to phosphate incorporation but rather to direct tillage effects on early plant growth. In a comparison of SSP with PRT or PAPR broadcast on soils not receiving tillage, PRT performed poorly relative to the other P sources. SSP outyielded PAPR and PRT in 1986, but in subsequent years, no significant difference was found between PAPR and SSP. Point placement of P or N near the plant did not significantly increase yields over broadcast treatments even though the millet was planted with wide 1×1 m spacing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: Bray P1 ; Bray P2 ; Mehlich 1 ; Olsen ; water-extractable P ; phosphate rock ; partially acidulated phosphate rock ; West Africa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field experiments were conducted in Niger with pearl millet (Pennisetum glaucum [L] R. Br.) in which the crop was fertilized with phosphate rock (PR) from two deposits from Niger (Tahoua and Parc W). The PR was applied either as ground rock or as partially acidulated phosphate rock (PAPR) and was compared to water soluble sources (TSP and SSP) in terms of millet yield response. The ability of five soil testing procedures (Bray P1, Bray P2, Mehlich 1, Olsen, and water extraction) to establish P sufficiency levels for millet was tested. The results of all soil testing methods were highly correlated amongst each other for the treatments receiving water-soluble fertilizers or PAPRs. None of the soil testing procedures which were evaluated was able to accurately measure available P when PRs were applied. Sufficiency levels were calculated for the PAPR and water-soluble fertilizers using nonlinear regression analysis and a graphic procedure for each of the P soil testing methods. The Bray P1 method appeared to be the most reliable procedure and was used to study the effect of accumulated total or total water + citrate-soluble P rates on final P availability. A single quadratic function was able to describe this effect when the P rates were expressed as water + citrate-soluble P for both PAPRs and water-soluble fertilizers independently of the P fertilizer source.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...