Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 7842-7849 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The rate coefficient for the ion–molecule reaction NH+3 +H2→NH+4+H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50–100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH+3+H2+He→NH+4+H+He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 1346-1359 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Broadening parameters for three microwave lines of water at 22.2, 183.3, and 380.2 GHz, in a bath of helium atoms, are calculated using accurate molecular scattering S matrices obtained from two theoretical potentials presented by Palma et al., J. Chem. Phys. 89, 1401 (1988). For the 22 GHz line results are in substantial agreement with values presented in that work, indicating the accuracy of approximate methods used there. The present work improves the potential energy surfaces, computed from perturbation theory (MP4) and variational interacting correlated fragments (ICF1) wave funcitons, by correcting them for basis set superposition error (BSSE), and recomputes the line broadening using a different procedure for fitting computed energy points. In addition, the entire set of calculations are repeated with a quite different basis set for orbital expansion to establish the reliability of the potential energy surface. We show that adjustments for superposition error are essential, and that broadening cross sections computed from the new surfaces are changed 10%–30% from the old, significantly improving agreement with experiment. The MP4 BSSE adjusted surface appears to be the most accurate, giving room temperature broadenings of 8.9, 11.8, and 10.0 A(ring)2 compared with experimental determinations of 12.2±1.2 , 11.9, and 11.2 A(ring)2 for the 22, 183, and 380 GHz lines, respectively. Thus, computed line to line variation is larger than observed. The ICF1 BSSE adjusted results for pressure broadening cross section parallel those from the MP4 BSSE calculations but are about 10% smaller. We believe our computed results are stable with respect to basis set for orbital expansion and that the scattering calculations are accurate. Any theoretical inadequacy has been pinpointed to too few points on the potential energy surface resulting in an inadequate description of the angle dependence. It is not clear whether the present discrepancy between computation and experiment stems from this or from errors in the experimental values, although we show some indication that additional information on the surface might decrease the computed broadenings, worsening agreement with experiment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 96 (1992), S. 7882-7886 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...