Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: growth factors ; phorbol 12-myristate 13-acetate ; microtubule-tubulin equilibrium ; initiation of DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previous studies suggest that alterations in the microtubule (MT)-tubulin equilibrium during G0/G1 affect mitogenesis. To determine the effect of growth factors on the MT-tubulin equilibrium, we developed a radioactive monoclonal antibody binding assay (Ball et al.: J. Cell. Biol. 103:1033-1041, 1986). With this assay, 3H-Ab 1 - 1.1 binding to cytoskeletons in confluent populations of cultured cells is proportional to the number of tubulin subunits polymerized into MTs. We now show that purified α-thrombin increases 3H-Ab 1 - 1.1 binding to cytoskeletons of serum-arrested mouse embryo (ME) fibroblasts from 1.5- to 3-fold. This stimulation is dose-dependent and correlates with concentrations of thrombin required for initiation of DNA synthesis. Other mitogenic factors, epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), also stimulate MT polymerization. Addition of colchicine (0.3 μM) eight hours after growth factor addition blocks stimulation of 3H-thymidine incorporation by thrombin, EGF, or PMA, suggesting that tubulin polymerization or subsequent events triggered by MT polymerization are required for cells to enter a proliferative cycle. Consistent with models for autoregulation of tubulin synthesis, thrombin, EGF, and PMA all increase tubulin synthesis 9 to 15 hr after growth factor addition, raising the possibility that the decrease in free tubulin and subsequent stimulation of tubulin synthesis is linked to progression of cells into a proliferative cycle. Colchicine addition to these cells also stimulates DNA synthesis, but colchicine-stimulated cells enter S phase 6 to 8 hr later than those stimulated by growth factors. This delayed stimulation may be related to the time required for degradation of tubulin- colchicine complexes below a critical level. These data suggest that regulation of cell proliferation may be linked to increased MT polymerization and the resulting decrease in free tubulin pools. © 1992 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Thrombin mitogenesis in fibroblasts requires two distinguishable subsets of signals; one generated by proteolytic cleavage, the other by high-affinity cell surface binding. Characterizing two closely related mouse embryo (ME) cell lines with high numbers of thrombin binding sites, we found that one line, B11-A, responds mitogenically to thrombin, epidermal growth factor (EGF), and serum, whereas the B11-B cell line is responsive to EGF and serum, but not to thrombin. The B11-B defect responsible for loss of thrombin responsiveness is not due to differences in the number of high-affinity binding sites, the affinity of thrombin binding to these sites, or to differences in cell surface expression of proteolytically activated receptors for thrombin (PART). The defect is also not associated with an inability of thrombin to activate PART since thrombin stimulates the cleavage-dependent induction of the proto-oncogene c-fos in both B11-A and B11-B cells. Various combinations of thrombin, synthetic thrombin receptor peptide, TRP-14 (SFFLRNPGENTFEL), platelet-derived growth factor (PDGF), and phorbol 12-myristate 13-acetate (PMA) were used to better define the defect in thrombin-mediated mitogenesis in B11-B cells. Direct activation of protein kinase C with PMA in combination with thrombin did not overcome B11-B nonresponsiveness. However, mitogenic responsiveness was regained in B11-B cells by simultaneous addition of PDGF and either thrombin or TRP-14. Therefore, the B11-B defect may involve a set of signals initiated by nonproteolytic thrombin interactions distinct from those initiated by PART, but related to the downstream signals initiated by the tyrosine kinase-associated growth factors, EGF and PDGF. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...