Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1980-1984
  • 1930-1934
  • 78.65.-s  (1)
  • 1
    ISSN: 1432-0630
    Keywords: 78.65.-s ; 73.20.Dx ; 78.55.-m ; 73.60.Br
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Excitonic resonance structures in GaAs/AlAs multiple quantum well heterostructures with varying barrier-layer thicknessesL B down to 1.3 nm are investigated for two sets of samples with the nominal well widths ofL Z =9.2 and 6.4 nm, by 2K photoluminescence excitation spectroscopy. The observed resonance energies of then=1 heavyhole (1 hh) and light-hole (1 lh) free excitons imply that quantum confinement effects persist at least down to the decreased barrier-layer thickness ofL B =1.3 nm. This result is inconsistent with the red shifts expected from the simple well-coupling theory within the one-band Kronig-Penney model at theГ point. Instead, blue shifts of 6–8 meV (8–17 meV) are observed for the 1 hh (1 lh) excitonic resonance peaks whenL B is decreased from 10 to 2 nm. A relative decrease of the oscillator strength of the 1 lh transition compared to the 1 hh transition is also observed asL B is decreased. These results manifest important effects of the indirect-gap barrier material for the actual wavefunction matching across the interface and the breakdown of the envelope function approach to GaAs/AlAs quantum well heterostructures with ultrathin barriers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...