Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Electron microprobe analysis ; Sympathetic neurones ; Cellular electrolyte concentrations ; Carbachol ; Ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Intracellular element concentrations were measured in rat sympathetic neurones using energy dispersive electron microprobe analysis. The resting intracellular concentrations of sodium potassium and chloride measured in ganglia maintained for about 90 min in vitro at 25° C were 3, 155 and 25 mmol/kg total tissue wet weight respectively. Recalculated in mmol/l cell water, these values are 5, 196 and 32 respectively. There were no significant differences between the nuclear and cytoplasmic values of these ions. Incubation in either carbachol (108 μmol/l, 4 min) or ouabain (1 mmol/l, 60 min) significantly increased the intracellular sodium and decreased the intracellular potassium concentrations. Neither substance materially altered the intracellular chloride concentration. The data obtained are compared and contrasted to those obtained in mammalian sympathetic neurones using chemical analysis and ion-sensitive microelectrodes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Acute metabolic acidosis ; Renal distal electrolyte transport ; Renal cell electrolyte concentrations ; Individual distal tubule cells ; Transmembrane electrolyte concentration gradients ; Electron microprobe analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We studied the effect of acute metabolic acidosis on potassium, sodium and chloride gradients across the apical membrane of proximal and distal tubule cells by determining electrolyte concentrations in individual cells and in tubule fluid employing electron microprobe analysis. Cellular measurements were performed on freeze-dried cryosections of the renal cortex, analysis of tubule fluid electrolyte concentrations on freeze-dried microdroplets of micropuncture samples obtained from proximal and from early and late distal collection sites. Acidosis (NH4Cl i.v. and i.g.) induced a substantial rise in plasma potassium concentration without significant effects on cell potassium concentrations. Potassium concentrations along the surface distal tubule were also unaltered; thus the chemical driving force for potassium exit from cell to lumen was not affected by acidosis. In all but intercalated cells acidosis markedly increased cell phosphorus concentration and cell dry weight indicating cell shrinkage and thus diminution of cell potassium content. Because the increase in intracellular chloride concentration exceeded the increase in plasma chloride concentration, the chemical chloride gradient across the contraluminal membrane was markedly depressed by acidosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 66 (1988), S. 843-848 
    ISSN: 1432-1440
    Keywords: Renal papillary cells ; Cell electrolytes ; Osmoadaptation ; Organic osmolytes ; Electron microprobe analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The cells of the renal papilla are subject to extreme variations in extracellular tonicity. To obtain more insight into the mechanisms whereby these cells adapt osmotically to these unique environmental conditions, elements were measured in individual cells of the rat renal papilla in antidiuresis and after prolonged furosemide administration. In antidiuresis cell sodium, chloride and potassium concentrations did not differ fundamentally from those observed in tubule cells exposed to isotonic surroundings such as in proximal tubule cells. The marked fall in extracellular electrolyte concentrations induced by furosemide was paralleled by a far less pronounced decline in intracellular sodium, chloride and potassium concentrations. These data indicate that papillary cells achieve osmoadaptation to widely differing extracellular tonicities mainly by varying the intracellular concentrations of osmotically active substances other than inorganic electrolytes. Since high concentrations of organic osmolytes (sorbitol, inositol, glycerophosphorylcholine and other trimethylamines) have been detected in the papilla and since the tissue contents of these compounds have been shown to vary in parallel with urine osmolality, it may be concluded that metabolically inert, organic osmolytes play a dominant role in the osmoregulation of renal papillary cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...