Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1980-1984  (1)
  • GM1-gangliosidosis type 1  (1)
  • Macular mutant mouse  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 72 (1987), S. 349-354 
    ISSN: 1432-0533
    Keywords: Macular mutant mouse ; Menkes kinky hair disease ; Golgi study ; Purkinje cell ; Copper metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study was undertaken to elucidate, using the Golgi method, the neuropathological change in the brain of the macular mutant mouse, whose hemizygote (Ml/y) is considered to be a model of Menkes kinky hair disease (MKHD). The hemizygote mice gradually lost weight after 10 days of age and died with emaciation and seizure around day 15. The normal littermate (+/y) was well developed. In the cerebrum, the arborization of pyramidal neurons in the layer V of the Ml/y was the same as that in the +/y on day 10. However, development of arborization in the Ml/y was delayed in comparison with that in the +/y on days 12 and 14. Purkinje cells with several somal sprouts were observed in the cerebellum in both the Ml/y and +/y on day 7. The somal sprouts in the +/y had regressed gradually by day 12, while they were still in the anterior and middle lobes of the Ml/y on day 14. Additionally, the trunks of Ml/y stem dendrites became thicker and a cactus formation was recognized on the branching portion of the dendrites on day 14. Arborization of these abnormal Purkinje cells was distinctly poor compared with that in the +/y. These results suggest that the growth of the neurons is delayed in the Ml/y and simultaneously their cytoskeletal developments are disturbed, especially in the Purkinje cells. There is a close similarity in many respects to the neuropathological change in MKHD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Ultrastructure ; Fetus ; Nervous system ; GM1-gangliosidosis type 1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The nervous system of a 22-week-old fetus with GM1-gangliosidosis type 1 was studied by electron microscopy. The tissues thus examined were the cerebral cortex at the parietal region, the cerebellum, the thoracic spinal cord, the Auerbach's myenteric plexus in the large intestine and the radial nerve fibers. In the cerebral cortex, membrane-bound vacuoles, which occasionally contained stacks of fine fibrils, were observed in the large young neurons in the deeper part of the cortical plate. The neurons in the other part of the cerebral cortex carried no storage materials. In the cerebellum, the membrane-bound vacuoles with stacks of fine fibrils were seen only in the Purkinje cells. The neurons in the spinal cord also contained several zebra-like bodies and the above membrane-bound vacuoles. As for the peripheral nervous system (PNS), neurons in the Auerbach's myenteric plexus carried membranous cytoplasmic bodies and zebra-like bodies. Some of the axons in the radial nerve fibers also contained a lot of pleomorphic electron-dense bodies and a few membranous cytoplasmic ones. These results show that the accumulation of storage materials is started in the large neurons which are produced in the early stage of neurogenesis in the central nervous system (CNS). Additionally, the observed membrane-bound vacuoles are considered to be structures which occur before the membranous cytoplasmic bodies and/or the zebra-like bodies. It is also elucidated that the PNS is affected earlier than the cerebral and cerebellar cortices and thoracic spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...