Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1980-1984  (1)
  • Glycerol  (1)
  • Hexose transport  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 139 (1984), S. 366-370 
    ISSN: 1432-072X
    Keywords: Lactic acid bacteria ; Lactobacillus brevis ; Propanediol-1,2-dehydratase ; Propanediol-1,2 ; Glycerol ; Ethanediol-1,2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract While most strains of heterofermentative lactobacilli and strains of Leuconostoc species contained only traces of a dehydratase reacting with glycerol or propanediol-1,2, three strains of Lactobacillus brevis and one strain of L. buchneri that metabolized glycerol readily in the presence of glucose, contained propanediol-1,2 dehydratase (EC 4.2.1.28). This cobamide requiring enzyme from L. brevis B 18 was partially purified. It reacts with the substrates propanediol-1,2, glycerol and ethanediol-1,2 with the relative activities of about 3:2:1. This ratio remained unchanged throughout the purification procedure. The substrate affinities were measured: propanediol-1,2 K m=0.6 mM, glycerol K m=4 mM, ethanediol-1,2 K m=5.3 mM coenzyme B12 (substrate glycerol) K m=0.007 mM. The activity of the dehydratase was promoted by potassium or ammonium ions and inhibited by sodium, lithium, magnesium or specially manganese. The apparent molecular weight of propanediol-1,2 dehydratase was determined as Mr=180,000.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 37-41 
    ISSN: 1432-072X
    Keywords: Yeast ; Hexose transport ; Sugar ; Malate uptake ; 2,4-DNP ; Zygosaccharomyces bailii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When grown in fructose or glucose the cells of Zygosaccharomyces bailii were physiologically different. Only the glucose grown cells (glucose cells) possessed an additional transport system for glucose and malate. Experiments with transport mutants had lead to the assumption that malate and glucose were transported by one carrier, but further experiments proved the existence of two separate carrier systems. Glucose was taken up by carriers with high and low affinity. Malate was only transported by an uptake system and it was not liberated by starved malate-loaded cells, probably due to the low affinity of the intracellular anion to the carrier. The uptake of malate was inhibited by fructose, glucose, mannose, and 2-DOG but not by non metabolisable analogues of glucose. The interference of malate transport by glucose, mannose or 2-DOG was prevented by 2,4-dinitrophenol, probably by inhibiting the sugar phosphorylation by hexokinase. Preincubation of glucose-cells with metabolisable hexoses promoted the subsequent malate transport in a sugar free environment. Preincubation of glucose-cells with 2-DOG, but not with 2-DOG/2,4-DNP, decreased the subsequent malate transport. The existence of two separate transport systems for glucose and malate was demonstrated with specific inhibitors: malate transport was inhibited by sodium fluoride and glucose transport by uranylnitrate. A model has been discussed that might explain the interference of hexoses with malate uptake in Z. bailii.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...