Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989
  • 1980-1984  (2)
  • Malic acid  (1)
  • Propanediol-1,2  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 139 (1984), S. 366-370 
    ISSN: 1432-072X
    Keywords: Lactic acid bacteria ; Lactobacillus brevis ; Propanediol-1,2-dehydratase ; Propanediol-1,2 ; Glycerol ; Ethanediol-1,2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract While most strains of heterofermentative lactobacilli and strains of Leuconostoc species contained only traces of a dehydratase reacting with glycerol or propanediol-1,2, three strains of Lactobacillus brevis and one strain of L. buchneri that metabolized glycerol readily in the presence of glucose, contained propanediol-1,2 dehydratase (EC 4.2.1.28). This cobamide requiring enzyme from L. brevis B 18 was partially purified. It reacts with the substrates propanediol-1,2, glycerol and ethanediol-1,2 with the relative activities of about 3:2:1. This ratio remained unchanged throughout the purification procedure. The substrate affinities were measured: propanediol-1,2 K m=0.6 mM, glycerol K m=4 mM, ethanediol-1,2 K m=5.3 mM coenzyme B12 (substrate glycerol) K m=0.007 mM. The activity of the dehydratase was promoted by potassium or ammonium ions and inhibited by sodium, lithium, magnesium or specially manganese. The apparent molecular weight of propanediol-1,2 dehydratase was determined as Mr=180,000.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 131 (1982), S. 266-270 
    ISSN: 1432-072X
    Keywords: Malic acid ; Fermentation ; Saccharomyces bailii ; Malic enzyme ; Fumarase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. The main pathway of the anaerobic metabolism of l-malate in Saccharomyces bailii is catalyzed by a l-malic enzyme. 2. The enzyme was purified more than 300-fold. During the purification procedure fumarase and pyruvate decarboxylase were removed completely, and malate dehydrogenase and oxalacetate decarboxylase were removed to a very large extent. 3. Manganese ions are not required for the reaction of malic enzyme of Saccharomyces bailii, but the activity of the enzyme is increased by manganese. 4. The reaction of l-malic enzyme proceeds with the coenzymes NAD and (to a lesser extent) NADP. 5. The K m-values of the malic enzyme of Saccharomyces bailii were 10 mM for l-malate and 0.1 mM for NAD. 6. A model based on the activity and substrate affinity of malic enzyme, the intracellular concentration of malate and phosphate, and its action on fumarase, is proposed to explain the complete anaerobic degradation of malate in Saccharomyces bailii as compared with the partial decomposition of malate in Saccharomyces cerevisiae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...