Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • 1975-1979  (1)
  • 1965-1969
  • Intracellular electrolytes  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular medicine 57 (1979), S. 993-999 
    ISSN: 1432-1440
    Keywords: Electron microprobe analysis ; Intracellular electrolytes ; Kidney ; Ischaemia ; Elektronenstrahl-Mikroanalyse ; Intrazelluläre Elektrolyte ; Niere ; Ischämie
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In order to be able to examine the processes involved in transepithelial transport in tissues, which are not composed of a single cell type, methods are required, which permit analysis at a cellular level. The technique of electron microprobe analysis permits the intracellular concentrations of many elements to be determined simultaneously in various portions of the cell. The application of this method to renal cortical tissue has shown that the best estimates of the cytoplasmic concentrations are to be obtained in regions close to the nucleus, farthest from the basolateral infoldings and microvilli, which separate the intracellular environment from the extracellular space. The nuclear concentrations of Na and K do not differ from those in the surrounding cytoplasm, although those of P and C1 are somewhat higher in cytoplasm. The intracellular element concentrations in the different cell types vary somewhat, proximal tubular cells contain higher concentrations of Na and C1 and lower ones of P than distal tubular cells. Following ischaemia, a manoeuvre know to result in a disturbance of intracellular electrolytes, Na was observed to rise and K to fall only in the non-surface cells of kidneys exposed to the air, but in all cells, if the kidneys were kept air-free in an atmosphere of N2. The proximal and distal tubular cells showed a variable resistance to ischaemia, the distal tubular cells being much more resistant. Despite the severity of the electrolyte disturbance following ischaemia, the intracellular composition was completely restored one hour after re-introducing renal blood flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Electron microprobe analysis ; Volume expansion ; Intracellular electrolytes ; Renal tubular cells ; Natriuretic mechanisms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract It has previously been shown that during mannitol-saline volume expansion (VE) Na transport was inhibited 50% by harvested proximal tubular fluid without a change in paracellular shunt pathway permeability to Na. To determine whether this inhibition was due to changes in cellular entry step or an effect on the pump itself, intracellular element concentrations were measured by electron microprobe X-ray ranalysis in proximal tubular cells of control (non-expanded, NE) and VE rats. Na i , Cl i and phosphorus i were increased (mean±S.E.) from 19.3±0.8 to 23.4±0.6, 15.8±0.4 to 21.3±0.4 and 124.3±2.6 to 138.0±1.8 mmol · kg−1 wet weight (P〈0.001) respectively while K i remained unchanged: 122.9±2.2 and 124.2±1.3 mmol · kg−1 wet weight. The increases in Na i and Cl i were in excess of cell shrinkage produced by the hyperosmolal peritubular environment while the unchanged K i in the face of cell shrinkage indicates and actual loss. It is concluded that mannitol-saline VE inhibits the Na pump producing a rise in Na i and a fall in K i .
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...