Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 36 (1985), S. 1-13 
    ISSN: 1432-0630
    Keywords: 78.55.-m ; 78.55.Ds ; 71.55.Fr
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Photoluminescence is studied in silicon, deformed in a well-defined and reproducible way. Usual deformation conditions (high temperature, low stress) result in sharp spectra of the D1 through D4 lines as recently described in the literature. New lines D5 and D6 emerge for predeformation as above and subsequent low-temperature, high-stress deformation. Another new sharp line, D12, is observed when both the familiar and the novel lines appear simultaneously. Annealing for 1 h atT A≳ 300 °C causes all new lines to disappear and the D1–D4 spectra to reappear. Quantitative annealing and TEM micrographs suggest that D5 is related to straight dislocations and D6 to stacking faults, whereas D1–D4 are due to relaxed dislocations. Photoluminescence under uniaxial stress shows that D1/D2 originate in tetragonal defects with random orientation relative to 〈100〉 directions, whereas D6 stems from triclinic centers, preferentially oriented — as are the D3/D4 centers. We conclude that the D3/D4 and the D5 and D6 defects are closely related, whereas the independent D1/D2 centers might be deformation-produced point defects in the strain region of dislocations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...