Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 60 (1973), S. 290-297 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 404 (1985), S. 300-306 
    ISSN: 1432-2013
    Keywords: Epithelial transport ; Contraluminal cell membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity for the contraluminal sulfate transport system the inhibitory potency of disulfonates, di-, tricarboxylates and sulfocarboxylates on the35SO 4 2− influx from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1) Methane- and ethane-disulfonate as well as benzene-1,3-disulfonate inhibit contraluminal35SO 4 2− influx (with an (app.K i of 〈6 mmol/l), while benzene-1,2- and 1,4-disulfonate do not. 2) The inhibitory potency of 1,3-benzene disulfonate is slightly augmented by an additional NH2 − or OH-group in position 4. However, OH-groups at position 4 and 5 or 4 and 6 abolish the inhibitory potency. 3) The naphthalene disulfonates tested inhibit only if they have an OH-group in ortho-position to one SO3H group. 4) The stilbene disulfonates H2DIDS and DNDS inhibit the contraluminal35SO 4 2− influx with high (app.K i≈0.8 mmol/l), DADS with lower potency (app.K i≈6 mmol/l). 5) Amongst the tested aliphatic di- and tricarboxylates inhibition was exerted by oxalate (app.K i 1.1 mmol/l) and maleate (app.K i 3.8 mmol/l), but not by malonate, hydroxymalonate and citrate. 6) Out of the tested benzenedicarboxylates only those inhibit which have the COO−-groups directly on the ring in 1,2 and 1,3 position (app.K i 4.0 and 2.7 mmol/l), but not in the 1,4 position. An additional OH-group in position 4 augments the inhibitory potency of 1,3 benzene-dicarboxylates (app.K i 0.8 mmol/l), while an OH group on position 5 abolishes it. 7) The benzene tricarboxylates (BTC) inhibit in the sequence 1,2,3-BTC〉1,3,5-BTC〉1,2,4-BTC (app.K i 0.9, 1.5 and 4.2 mmol/l, respectively). 8) The carboxy-benzene-sulfonates inhibit also in the 1,2 and 1,3 position only (app.K i 6.7 and 5 mmol/l), but not in the 1,4 position. Addition of an −OH-group to the 3-carboxy-1-benzene-sulfonate forming 4-hydroxy-3-carboxy-1-benzene-sulfate augments the inhibitory potency drastically (app.K i 0.32 mmol/l), while a NH2 substitution at the same position leaves it unchanged (app.K i 4.7 mmol/l). If, however, ethylamine instead of NH2 is used as substituent, the inhibitory potency is almost as high as of 4-hydroxy-3-carboxy-1-benzene-sulfonate (app.K i≈0.6 mmol/l). Amongst the dicarboxy-benzene-sulfonates, 3,4-carboxy-benzene-1-sulfonate inhibits (app.K i ca. 2 mmol/l), while 3,5-carboxy-benzene-1-sulfonate does not. The data indicate that a strong interaction of substrate with the sulfate transporter is given, when two charged groups (COO− and/or SO 3 − ) are present in a distance equivalent to the meta-position on the benzene ring and an additional hydrogen bond forming OH- or −NH-group. Hydrogen bond forming groups and charged groups in other positions usually abolish the inhibitory potency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 407 (1986), S. 488-492 
    ISSN: 1432-2013
    Keywords: Lactate ; Pyruvate ; 3-hydroxybutyrate ; Acetoacetate ; Nonspecific anion channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the characteristic of contraluminal transport of hydrophylic small fatty acids the in situ stopped flow microperfusion technique [12] has been applied. By measuring with 4 s contact time the decrease in the contraluminal concentration of the respective radiolabelled substances the concentration dependence of the influx into the cortical cells was tested. The 4 s decrease in contraluminal concentration of chloroacetate,l-lactate,d-lactate, 3-hydroxybutyrate and acetoacetate was between 26% and 31%. For each substance the percent decrease was the same, no matter whether it was offered in a concentration of 0.1 or 10 mmol/l. Contraluminal disappearance of 0.1 mmol/ll-lactate was not influenced by 5 mmol/l H2DIDS, probenecid, phloretin, mersalyl or cyanocinnamate, but it was significantly (37%) inhibited by 5-nitro-2-(phenyl-propyl-amino) benzoate, a blocker of the nonspecific anion channel. The percent decrease in propionate uptake was somewhat larger — between 36% and 39% — but again not different at 0.01, 0.1, 1.0 and 10 mmol/l. With pyruvate the contraluminal decrease was 20% at 0.1 mmol/l and 31% at 10 mmol/l. The percent disappearance of the aromatic pyrazinoate was 38% and 34% at 0.1 and 10 mmol/l and for nicotinate 42% and 22%, respectively. The disappearance of nicotinate (0.1 mmol/l) was significantly inhibited by 10 mmol/l pyrazinoate and paraaminohippurate (PAH). The data are in agreement with the hypothesis that the hydrophilic small fatty acids traverse the contraluminal cell side by simple diffusion, possibly via the unspecific anion channel [14], pyruvate via the dicarboxylic acid pathway in a cooperative manner and pyrazinoate, as well as nicotinate, via the PAH pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Oxalate ; Succinate ; Glutarate ; 2-Oxoglutarate ; Citrate ; Sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity for contraluminal para-aminohippurate (PAH) transport, the inhibitory potency of aliphatic dicarboxylates on3H-PAH influx, as well as the inhibitory effect on35SO 4 2− - and3H-succinate influx, from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1. Testing a homologous series of dicarboxylates-ranging from the 2 C oxalate to the 10 C sebacate — PAH transport was inhibited by succinate (app.K i 1.35 mmol/l), and all longer dicarboxylates, with high potency (app.K i 0.05–0.35 mmol/l). Sulfate transport was inhibited only by oxalate (app.K i 1.1 mmol/l), while dicarboxylate transport was inhibited by succinate, glutarate, adipate and pimelate with decreasing potency (app.K i 0.04, 0.24, 0.91, 4.0 mmol/l, respectively). 2. PAH transport was inhibited by succinate and glutarate with high potency (app.K i 1.35 and 0.05 mmol/l), by the correspondent monomethylester to a lesser extent (app.K i 1.7 and 0.74 mmol/l), but not by the dimethylester. On the other hand, the semialdehyde of succinate with aK i-value of 1.2 mmol/l, had the same inhibitory potency as succinate itself, while the dialdehyde of glutarate (app.K i 1.4 mmol/l) was much less potent as glutarate. 3. Introduction of an oxo-, methyl- or sulfhydroxylgroup onto the 2-position of succinate, or of an oxo-group onto the 2-position of glutarate moderately augmented the inhibitory potency against PAH-uptake. However, introduction of a 2-hydroxy group onto succinate or glutarate in thel-position reduced the inhibitory potency more than in thed-position. Introduction of two methyl-, sulfhydryl- or hydroxyl-groups in the 2–3-position of succinate reduced or abolished its inhibitory potency. The introduction of a 2-amino group onto succinate or glutarate abolished its effect on PAH transport. However, N-acetylation or N-benzoylation led to a restitution in inhibitory potency. 4. The trans-isomers fumarate and mesaconate inhibited PAH- and methylsuccinate transport, while the cis-isomers maleate and citraconate did so to a lesser extent or not at all. The effect was reversed with the tricarboxylic aconitates, because cis-aconitate bears a CH2-extended COOH-group in trans-position and trans-aconitate in cis-position. The data indicate that there exist three different anion transport systems at the contraluminal cell side of the proximal renal tubule: 1. a sulfate-oxalate transporter, 2. a sodium-dependent dicarboxylate transporter, and 3. a paraaminohippurate transporter. The PAH transport system accepts dicarboxylates with chain length higher than 7.5 Å (=distance between the terminal oxygen atoms), while the dicarboxylate transport interacts with dicarboxylates with a chain length between 6.5 and 10 Å. Both transport systems prefer the transconfiguration. The effect of side groups on the interaction of dicarboxylates with the PAH-transport system is due mainly to hydrophobicity and electron configuration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Proximal Kidney Tubule ; Mercurials ; SH Reagents ; Site Group Reagents ; Transtubular Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of site group reagents were tested on the following transport processes of the proximal convolution. Isotonic Na+ absorption, evaluated by the shrinking droplet procedure, histidine and glucose transport, evaluated by measuring the respective transtubular concentration difference at zero substance and water net flux. The test substances were applied either by continuous microperfusion of the peritubular capillaries or by luminal perfusion prior to the transport tests or by addition to the luminal test solution. The SH reagents (0.2 mM) N-ethylmaleimide,p-chloromercuribenzoate (pCMB) 3,6-bis-(acetatomercurimethyl)dioxane and Mersalyl (Salyrgane) caused 50% inhibition of the isotonic Na+ absorption in approximately 1.5 min when applied to the capillary perfusate. The same effect was reached in 2–3 min by 0.2 mMp-chloromercuriphenylsulfonate, benzamido-4-iodo-acetylstilbene-2,5-disulfonate and 2,2′-dihydroperoxy-2,2′-dibutylperoxide. However, the large molecular SH reagentspCMB-dextran T10 and benzoxanthene-3,4-dicarboxylic-N-iodoacetyloligoprolyl-2-aminoethylimid, did not inhibit the isotonic Na+ absorption. If an inhibitory effect was observed on the Na+ transport its onset was faster, when the substance was applied from the blood site than when it was given from the tubular lumen. Because SH reagents inhibit the isotonic Na transport faster when applied from the blood side, and because SH reagents with MW up to 690 are inhibitory whereas larger ones with MW over 1700 are not, it seems that they exert their inhibitory action on SH groups located a) predominantly on the blood side and b) deep within the membrane and not at the surface. Histidine- and glucose transport was inhibited only when the sodium transport was inhibited considerably. The oxygen consumption of teased kidney slices is not inhibited by 0.2 mMpCMB or Mersalyl within 10 min, but it is inhibited considerably by 1 mM of these substances in the same period of incubation time. The COOH reagents N,N′-carbonyl-diimidazole and N-ethyl-N′-(3-dimethyl-aminopropyl)carbodiimid (10 mM) and the NH2 reagents 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid, 2 Na+ (SITS) (1 mM) as well as danslychloride (applied from the lumen at 5 mM in paraffin oil) did not inhibit the isotonic Na+ absorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Kidney Tubule ; Ion Transport ; Reflection Coefficient ; Tracer Permeability ; Active Transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Proximal tubules of the rat kidney were perfused in vivo with NaCl-NaHCO3 Ringer's solution and the net rates of fluid absorption from Gertz shrinking drops were measured as well as the stationary electro-chemical potential differences for Na+ and Cl− that develop across the tubular wall during constant fluid absorption. By altering the rate of fluid absorption through addition of raffinose to the peritubular perfusate or to the lumen fluid, the relations between the net ion fluxes and the electrochemical potential differences were obtained for Na+, Cl− and HCO 3 − . From these relations which were reasonably linear for Na+ and Cl− over small deviations from equilibrium, single ion reflection coefficients and active transport rates were calculated. Since the calculations required a knowledge of the permeability coefficients of the tubular wall for Na+ and Cl−, in a separate series of experiments these coefficients were determined from tracer flux experiments. The calculations yield σNa=0.7, and σCl=0.5 $$\sigma _{HCO_2 } $$ can be estimated to be substantially greater than σCl. Comparing the active transport rates to the net fluid absorption under conditions similar to free flow in the normal kidney, the following conclusions can be drawn: approximately one third of the sodium is resorbed by active transport, one third by electrical transference and one third by solvent drag. Chloride transport is entirely passive. One half of the chloride is resorbed by diffusion and one half by solvent drag. Bicarbonate transport appears to be entirely active, and the active transport rate is greater than the net transport pointing to passive bicarbonate back flux.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 404 (1985), S. 150-156 
    ISSN: 1432-2013
    Keywords: Glucose ; 2-Deoxy-d-glucose ; Intracellular compartmentalization ; Proximal tubule ; Contraluminal membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study contraluminal hexose transport, concentration and time-dependent influx of3H-2-deoxy-d-glucose from the interstitium into cortical tubular cells has been measured. The influx curves fit to a two parameter kinetics (K m 1.3±0.2 mmol/l,J max 0.67±0.16 pmol/s · cm) plus an additional diffusion term (withP=6·10−8 cm2/s) and a distribution ratio extracellular to intracellular amount of 2-deoxy-d-glucose of 1∶0.6. Since the extracellular to intracellular free water space as estimated from morphological data was 1∶2, one must conclude that glucose has only free access to 1/3 of the cell water. The intracellularly accessible space was augmented when the tubules were preperfused for 10 s with hypotonic saline. Thereby an increase of the compartment into which diffusion occurs was revealed and a final rupture of this intracellular compartment at 1/4 isotonic solutions was observed. Total replacement of ions in the peritubular perfusate by mannitol did not change 2-deoxy-d-glucose influx, indicating that it is Na+-independent. By adding isotonic concentrations of the respective sugars to the capillary perfusate, three degrees of inhibition of 2-deoxy-d-glucose influx could be revealed: strong inhibition byd-glucose, methyl-β-d-glucoside,d-mannose, 3-O-methyl-d-glucose, 2-deoxy-d-galactose, methyl-β-d-galactoside and 6-deoxy-d-glucose, moderate inhibition byd-galactose,l-glucose,l-mannose andd-fructose, no or borderline inhibition by methyl α-d-glucoside, 2-deoxy-methyl-α-d-galactoside, 1-thio-β-d-glucose, 1-thio-β-d-galactose, 5-thio-α-d-glucose, myo-inositol and mannitol. The contraluminal 2-deoxy-d-glucose influx was also inhibited by phloretin, chlormerodrin and preperfusion with cytochalasin B. Starvation as well as streptozotocin diabetes has no influence on contraluminal 2-deoxy-d-glucose transport. Thus, in contrast to the luminal hexose transport system the contraluminal system is Na+-independent, does not require on OH-group at C-atom 2, acceptsl-glucose and fructose, but not an α-methyl group at C-atom 1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 404 (1985), S. 293-299 
    ISSN: 1432-2013
    Keywords: Epithelial transport ; Contraluminal cell membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to study the specificity for the contraluminal sulfate transport system the inhibitory potency of sulfate esters and sulfonate compounds on the35SO 4 2− influx from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1. From 10 sulfate monoesters tested 9 inhibited contraluminal sulfate influx with an app.K i between 0.6 and 6 mmol/l; the two sulfate diesters tested, however, did not. 2. Out of 8 aliphatic sulfonate compounds only three, having a NH- or OH-group in a suitable position, exerted a moderate inhibition (app.K i ca. 2–6 mmol/l). 3. Amongst 14 benzene sulfonates tested only 2 compounds (5-nitrobenzene-sulfonate and 2-hydroxy-5-nitrobenzenesulfonate) inhibited with aK i〈5 mmol/l. 4. Out of 10 naphthalene sulfonates tested 8 inhibited with aK i〈5; the highest inhibition was seen with the NH-containing 8-anilinonaphthalene-1-sulfonate (ANS), but no inhibition with 2 compounds containing an amino group. 5. From the polycyclic sulfonates pyrene-3-sulfonate and anthracene-1-sulfonate inhibited with aK i of approximately 2 mmol/l, while no inhibition was seen with anthracene-2-sulfonate. 6. Out of 4 amino-sulfonates tested benzene-1-amino-sulfonate and a similar benzyl-analog inhibited with aK i of 1 mmol/l and smaller; cyclohexyl-1-amino-sulfonate (cyclamate), however, inhibited only slightly (app.K i of 6 mmol/l). The data indicate that sulfate monoesters are well accepted by the contraluminal sulfate transport system. The affinity of sulfonate compounds to this system depends on neighbouring OH-groups −NH-groups, meta-positioned electronegative groups or a hydrophobic moiety in an appropriate position.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 404 (1985), S. 311-318 
    ISSN: 1432-2013
    Keywords: Epithelial transport ; Contraluminal cell membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to evaluate the specificity for the contraluminal sulfate transport system the inhibitory potency of phenol- and sulfonphthaleins, of sulfamoyl-compounds (diuretics) as well as diphenylamine-2-carboxylates (Cl− channel blockers) on the35SO 4 2− influx from the interstitium into cortical tubular cells in situ has been determined. The following was found: 1) Phenolsulfonphthalein (phenol-red) inhibited with an app.K i-value of 1.7 mmol/l, while analogs which had additional Br-atoms in position 3 and/or 5, i.e. bromphenol-blue, bromcresol-purple and bromcresol-green, inhibited with an apparentK i of 0.1 and 0.5 mmol/l respectively. 2) Phenolphthalein and tetrabromphenolphthalein did not inhibit, while the disulfonate dyes bromsulfalein, fuchsin acid and indigocarmine inhibited with aK i between ≈1 and 3 mmol/l. The highest inhibitory potency in this class of compounds was seen with orange G (app.K i 0.07 mmol/l). The monosulfonate dyes tested, fluoresceinsulfonate and orange I inhibited moderately with an app.K i of ≈5 mmol/l. 3) The 3-sulfamoyl compounds inhibited to a varying degree, when they had a neighbouring −NH-group (furylmethylamino-group), i.e. in position 6 to the COOH or SO3H-group, or when they had a phenoxy-group in position 4. 4) 4-sulfamoylbenzoate and the related compounds probenecid, acetazolamide and hydrochlorothiazide inhibited with an app.K i between 4 and 7 mmol/l. 5) All diphenylamine-2-carboxylate analogs inhibited with an app.K i between 3 and 5 mmol/l, even when the −NH-group was replaced by an =O-group or the benzene ring was replaced by a pyrimidine ring, but not when it was replaced by a thiophen ring. In contrast, 4-phenylaminepyridine-3-sulfonate was ineffective, while diphenylamine-2-amino sulfonate exerted the highest inhibition of this group with an app.K i of 1.4 mmol/l. When, however, the aminosulfonate group was replaced by a methylsulfonamide, the inhibitory potency disappeared. The data can be explained by inhibitory patterns found in previous papers for disulfonates [29], sulfonates with a hydrophobic moiety [28] or neighbouring OH-group [28, 29], carboxylates with a neighbouring −NH- or OH-group in position 2- and an electron-attracting group in position 5 [30].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 410 (1987), S. 501-504 
    ISSN: 1432-2013
    Keywords: Na+-dependence ; Cl−-dependence ; Sulphate dependence ; DIDS ; Carbonic anhydrase inhibitors ; Nitrophenylglyoxal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to measure the contraluminal bicarbonate flux in situ we applied the stopped flow capillary microperfusion technique and measured the influx of14C-bicarbonate buffer into cortical tubular cells at pH 8. It was found that the influx in percent of the starting concentration is larger at 20 mmol/l bicarbonate than at 1 mmol/l, indicating a sigmoidal type influx curve. At 20 mmol/l bicarbonate the influx was inhibited by 44%, when Na+ was replaced by choline. Replacement of gluconate by chloride or sulfate did not change H14CO 3 − influx. At this bicarbonate concentration, influx is inhibited by 10 mmol/l 4,4′-diisothiocyanato-2,2′-stilbenedisulfonate (DIDS) (22%), 5 mmol/l of the carbonic anhydrase blocker ethoxyzolamide (40%) as well as by 5 mmol/l of the arginine reagent 4-nitrophenylglyoxal (31%). At 1 mmol/l bicarbonate starting concentration, bicarbonate influx was inhibited when chloride in the perfusate was present or when sulphate was added. Replacement of sodium by choline did not change bicarbonate influx. Addition of DIDS and 8-anilino-naphthalene-1-sulfonate (5 mmol/l each) inhibited 1 mmol/l bicarbonate influx 39 and 49%, respectively. The para-aminohippurate transport blocker dipropylsulfamoyl-benzoate (probenecid), the chloride channel blocker 5-nitro-2′-(3-phenylpropylamino)-benzoate (NPPB), the SH group blocker 2-(3-hydroxymercuri-2-methoxypropyl)-carbamoyl-phenoxyacetate (mersalyl), and formate did not inhibit bicarbonate influx, at 20 and at 1 mmol/l H14CO 3 − starting concentration. The data are compatible with the assumption of 1. a contraluminal (HCO 3 − )3/Na+ cotransporter inhibitable by DIDS, carbonic anhydrase inhibitors and 4-nitrophenylglyoxal, 2. a HCO 3 − /anion exchange system, which accepts sulfate and chloride and is inhibitable by the anion exchange blockers DIDS and 8-anilino-naphthalene-1-sulfonate, and 3. a HCO 3 − influx component which could not be influenced by Na+, Cl−, nor by the inhibitors applied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...