Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 27 (1988), S. 865-879 
    ISSN: 0570-0833
    Keywords: Proton sponges ; Hydrogen bonds ; Amines ; Basicity ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Certain aromatic diamines (the “proton sponges”) are found to have exceptionally high basicity constants: this is due to spatial interaction of the basic centers, which are in close proximity. The two factors which are most important in causing this effect are, on the one hand, the extreme steric strain in these systems and the destabilizing effect of the overlap of the nitrogen lone pairs of the neutral diamines and, on the other, the strong NċHċN hydrogen bonds which are formed on monoprotonation and which lead to a considerable relaxation of the steric strain. By the systematic variation of the structures of such aromatic diamines we have been able to study these effects as a function of steric factors, in particular of the geometry and the bond length of the NċHċN hydrogen bonds, by means of X-ray structural analysis. The hydrophobic shielding of the basic centers and the NċHċN hydrogen bonds, which was characteristic of the “proton sponge” compounds studied previously, is indeed responsible for the extremely low rate of protonation and deprotonation of these compounds; however, it apparently has no influence on their high thermodynamic basicity. The recent synthesis and basicity determination of a new type of “proton sponge” with no hydrophobic shielding whatever show that not only very strong but also kinetically active bases are accessible using the “proton sponge” concept. Their unusual properties, which are discussed here as the result of steric interactions between two basic centers, provide examples of the fact that cooperative steric interactions of reactive structural elements can lead to properties which cannot be derived from an isolated consideration of the various functional groups. Such “proximity effects” are certainly of general importance in chemistry and biochemistry; the study of their structure-function relationships is worthy of closer consideration.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...