Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • Acinar cells  (1)
  • Apical cell membrane  (1)
  • 1
    ISSN: 1432-2013
    Keywords: K+ channels ; Acinar cells ; Ensemble noise analysis ; Current relaxation ; Patch-clamp whole cell recording
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The K+ channel in rat parotid gland acinar cells were investigated by ensemble current noise analysis in single isolated cells employing the giga-seal whole cell current recording mode. Sets of 20–40 identical de- and hyperpolarization voltage steps were applied and the resultant current records were processed by computer to obtain the mean and the variance of the current. The time-course of the mean current could be fitted by the sum of two exponentials, suggesting a 3-state model. The simplest plausible hypothesis is a model with one open and two closed states. Assuming this model, the relationship between the variance (σ2) and the mean current (I) could be fitted by the function σ2/I=i−I/N. The estimated single channeli/V-relations were similar to those taken from single channel current recordings, and the size of the population of channels per cell (N) was 76±26 (n=12). The validity of the model was tested by a successful simulation of the time-course of the variance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 406 (1986), S. 563-567 
    ISSN: 1432-2013
    Keywords: Apical cell membrane ; K+ channel ; Patch-clamp ; Gallbaladder ; Ca2+ activation ; Voltage activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The presence of Ca2+- and voltage-activated K+ channels was directly demonstrated in the apical cell membrane of gallbladder epithelium by patch-clamp single-channel current recording. In K+-depolarized epithelial cells, negative pipette potentials induced outward current steps when the patch-pipette was filled with Na+-rich solution and these current steps were not affected by the presence or absence of Cl−. When K+-rich solution was in the pipette and K+-depolarized cells were examined, the current-voltage relations were linear with a single-channel conductance of 140 pS and polarity was reversed at 0 mV. In excised inside-out membrane patches, raising the free Ca2+ concentration of the medium facing the inner side of the membrane from 10−7 to 10−6 M evoked a marked increase in open state probability of the channels without affecting the elementary current steps. This suggests that intracellular Ca2+ as a second messenger plays a crucial role in the regulatory mechanism of the membrane potential by modulating the high-conductance apical K+ channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...