Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • Exopolysaccharide  (1)
  • nodulation  (1)
Material
Years
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 12 (1989), S. 19-29 
    ISSN: 1573-5028
    Keywords: Rhizobium ; nodulation ; host specificity ; Vicia ; peas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE 〈 nodFEL 〈 nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Exopolysaccharide ; Legume ; Nodules ; Rhizobium ; Xanthomonas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A Tn5-induced mutant strain of R. phaseoli which failed to synthesize exopolysaccharide (EPS) was isolated and was shown to induce normal nitrogen-fixing nodules on Phaseolus beans, the host of this Rhizobium species. The corresponding wild-type Rhizobium DNA was cloned in a wide host-range vector and by isolating Tn5 insertions in this cloned DNA, mutations in a gene termed pss (polysaccharide synthesis) were isolated. These were introduced by marker exchange into near-isogenic strains of R. leguminosarum and R. phaseoli which differed only in the identity of their symbiotic plasmids. Whereas the EPS-deficient mutant strain of R. phaseoli induced normal nitrogen-fixing nodules on Phaseolus beans, the same mutation prevented nodulation of peas by a strain of R. leguminosarum which normally nodulates this host. Further, it was found that DNA cloned from the plant pathogen Xanthomonas campestris pathover campestris could correct the defect in EPS synthesis in R. leguminosarum and R. phaseoli and also restored the ability to nodulate peas to the pss::Tn5 mutant strain of R. leguminosarum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...