Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 3 (1989), S. 105-113 
    ISSN: 0884-3996
    Keywords: Human neutrophils ; chemiluminescence ; reactive oxygen metabolites ; superoxide anion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: The bioluminescent oxygen metabolite indicator protein pholasin was characterized with respect to the type and location of reactive oxygen metabolites detected in suspensions of stimulated human neutrophils. Whereas pholasin detected reactive oxygen metabolites from neutrophil suspensions stimulated with soluble agents, particulate stimulants were apparently not effective triggering agents for pholasin-dependent neutrophil chemiluminescence. Neutrophils stimulated with fMet-Leu-Phe (1 to 100 nmol/l) showed maximum pholasin-dependent chemiluminescence 45 to 60s after stimulation. The time of maximum chemiluminescence was virtually independent of fMet-Leu-Phe concentration. In contrast, the time to reach maximum light emission increased from 60s with 100 nmol/l phorbol ester to 295s with 1 nmol/l phorbol ester. Significant inhibition of stimulated chemiluminescence was caused by both superoxide dismutase (20 μg/ml, 80% inhibition) and reduction of the oxygen concentration in the incubation medium to less than 0.5 μmol/l (95% inhibition). In contrast, the myeloperoxidase inhibitor sodium azide (0.1 nmol/l) afforded only 50% inhibition of the pholasin-dependent neutrophil chemiluminescence. Our results show that pholasin detects superoxide radicals released from cells stimulated by soluble stimulants but not intracellular oxidative activity elicited by particulate stimulants.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...