Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (6)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 51 (1987), S. 1986-1988 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Time-dependent density measurements of the lowest xenon excited states (5p56s) in electron beam (e-beam) pumped XeCl laser mixtures (nonlasing) are performed using pulsed hook interferometry. The e-beam pulse length is ≈0.45 μs (full width at half-maximum) with an average excitation rate of ≈250 kW/cm3. Density differences (ΔN*) of transitions at 823.2 nm (6s[3/2]02 –6p[3/2]2), 828.0 nm (6s[3/2]01 –6p[1/2]0), and 840.9 nm (6s[3/2]02 –6p[3/2]1) are obtained for various HCl and Xe concentrations. For a 98.3% Ne/1.5% Xe/0.16% HCl mixture at 3000 Torr, ΔN* (823.2 nm) and ΔN*(828.0 nm) are relatively constant at ≈3×1014 and ≈1.7×1014 cm−3, respectively. At lower initial HCl concentrations, the ΔN*(823.2 nm) density starts out similar to the 0.16% HCl case, but tends to increase dramatically during the e-beam pulse. For a 0.04% HCl mixture, a ΔN*(840.9 nm) density of ≈4.5×1015 cm−3 is measured at the end of the e-beam pulse. Preliminary comparisons of the data with a computer model show good agreement for HCl concentrations ≥0.16%, but disagreements at leaner concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 500-506 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electron energy distributions for energies lower than 17 eV and their time-dependent evolution are calculated for electron-beam-excited Ne/Xe/HCl mixtures. A time-dependent Boltzmann equation including all interactions between electrons and ground– or excited-state species is solved together with a detailed full kinetics model for XeCl lasers. The effects of electron-electron collision, HCl concentration, and excitation rate on the steady-state electron energy distribution are examined. Under certain conditions, that is, for relatively high excitations and relatively low initial HCl concentrations, the low-energy electron distributions tend to be Maxwellian, and their average energies depend on various inelastic processes which cool down the electron energy. All electron reaction rates, especially those related to HCl vibrational excitation and dissociative attachment, are a function of the excitation rate and the transient HCl (v), Xe*, Xe**, and electron densities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 64 (1988), S. 507-515 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Understanding of the neutral channel formation kinetics in excimer laser gas mixtures has been limited by the lack of data on the pertinent excited-state populations in these mixtures. Presented are time-dependent measurements of the lower level xenon excited-state densities in electron-beam (e-beam) pumped XeCl and XeF laser mixtures (neon diluent). Measurements are obtained using hook interferometry under nonlasing conditions at an average excitation rate of ≈250 kW/cm3 and e-beam pulse lengths of 0.4 and 1 μs. The population differences, ΔN*, between four different electronic transitions [three in the Xe*(6s)-Xe**(6p) manifold, and one in the Xe**(6s')-Xe***(6p') manifold] are examined as a function of halogen concentration. For both XeCl and XeF at high initial halogen concentrations (〉4 Torr), the ΔN* densities of the Xe*(6s) and Xe**(6s') transitions are relatively constant during the 0.4-μs e-beam pulse [for ΔN*(6s-6p): ≈4×1014 cm−3 for XeCl, and ≈1.5×1014 cm−3 for XeF]. At lower initial halogen concentrations, the ΔN* densities of 6s-6p and 6s'-6p' start at the beginning of the pulse at approximately the same densities as the richer halogen mixtures, but at a certain point during the pulse, the ΔN* densities abruptly increase. This increase can be 〉10 times for very lean halogen mixtures (1–2 Torr), and occurs at earlier times as the initial halogen concentration is reduced. From other measurements, this increase appears related to the depletion of the halogen. The observed lifetime of the Xe*(6s) densities is ≈2 μs for the low initital halogen concentration mixtures. Additional density data for halogen-free Ne/Xe and Ar/Xe mixtures are also presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 63 (1988), S. 4377-4387 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electron energy distribution in electron beam (e beam) excited Ar/Kr and Ne/Xe gas mixtures is examined in detail. The binary rare-gas mixtures are similar to those used in excimer lasers. Cooling processes for the secondary electrons generated in the gas mixture plasma by the e beam are calculated using a reduced Boltzmann equation in which elastic and electron-electron collisions for electron energy distributions above the first excitation threshold of the rare gas are ignored. During the calculations for the Ar/Kr and Ne/Xe mixtures, all electron-related reactions and the interaction between the two different rare gases in the mixture are simultaneously considered. The high-energy secondary electrons produce a steady-state distribution within a very short time; however, it is found that the distribution is not Maxwellian. W values [eV/electron-ion pair] and yields of rare-gas excited states calculated from the steady-state high-energy electron distribution show a dependence on the mixture composition, especially for mixtures with low concentrations of the minor rare gas. This implies that the practice in excimer kinetics models of using the W values determined from pure rare gases is not entirely accurate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 63 (1988), S. 1299-1305 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Time-dependent calculations of multiplexed short-pulse amplification are presented which show that cascaded short pulses in KrF lasers, with an appropriate time interval between the pulses, can extract energy with only a small cost in extraction efficiency as compared to a single long pulse. This dynamic characteristic of KrF* permits the design of a novel, simpler angular multiplexing system. Calculations include nonsaturable and saturable absorption, amplified spontaneous emission effects, and an end mirror for double-pass amplification. The dependence of the extraction efficiency and the energy gain on the time interval and pulse shape are calculated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 61 (1987), S. 476-488 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper describes the results of a detailed experimental study of an electron-beam-pumped, high Kr concentration KrF laser. The excitation rate is 1.4 MW/cm3 for 1 atm of Kr gas. The formation efficiency of KrF* and extraction efficiency are estimated using calculated values of saturation intensity and g0/α0, the ratio of small-signal gain to saturable absorption, together with measured values of g0 and the ratio of g0 to nonsaturable absorption (αn). Although the highest formation efficiency of 24% is observed at 99.7% Kr concentration, the effect of finite vibrational-relaxation rate significantly decreases the KrF* density accessible to lasing at high Kr concentration due to the shorter lifetime of KrF*. KrF* vibrational-relaxation rates of 4×10−11 and 5×10−11 cm3 s−1 are determined for Ar gas and Kr gas, respectively. A decrease of g0/α0 and g0/αn resulting in low extraction efficiency is observed at high Kr concentration due to the relatively high α0 and αn. The intrinsic efficiencies are 11, 11.8, and 9% for 1 atm mixtures at 10, 50, and 99.7% Kr, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...