Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • Aromatic metabolism in protocatechuate 3,4-dioxygenase  (1)
  • low density lipoprotein  (1)
  • 1
    ISSN: 1432-0428
    Keywords: Type 2 diabetes mellitus ; low density lipoprotein ; lipoprotein binding ; lipoprotein degradation ; fibroblast, macrophage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Studies in vitro have shown that glycosylation of low density lipoprotein (LDL) will decrease its ability to bind to its receptor. We have evaluated the possibility that such an event might occur in vivo in diabetes by comparing the binding and degradation by normal fibroblasts and mouse peritoneal macrophages of LDL obtained from normal control subjects and patients with Type 2 (non-insulin-dependent) diabetes mellitus. When compared with control subjects, Type 2 diabetic patients had elevated fasting glucose (increased by 160%), haemoglobin A1c (increased by 75%), triglyceride (increased by 550%), and cholesterol (increased by 48%) levels. LDL from Type 2 diabetic patients displayed populations of particles with more heterogeneous hydrated densities than LDL from control subjects, with enrichment in the triglyceride content of the lighter population. 125I-LDL from normal and Type 2 diabetic subjects bound to fibroblasts with similar binding affinities and binding capacities. The kinetics of degradation of LDL from normal and Type 2 diabetic subjects by fibroblasts were also similar. Furthermore, all populations of LDL particles from Type 2 diabetic patients were bound and degraded by normal fibroblasts in identical fashions. In addition, 125I-LDL from normal and Type 2 diabetic subjects were not bound or degraded by mouse peritoneal macrophages. It is concluded that the LDL of patients with Type 2 diabetes with moderate hyperglycaemia are not modified sufficiently to alter their normal binding and degradation by human fibroblasts or to cause their uptake by mouse peritoneal macrophages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 138 (1984), S. 187-190 
    ISSN: 1432-072X
    Keywords: Rhizobium ; Aromatic metabolism in protocatechuate 3,4-dioxygenase ; R. trifolii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) has been purified 42-fold from 4-hydroxybenzoate-grown cells of Rhizobium trifolii TA1, where it constitutes about 2% of the cell protein. The dioxygenase has a molecular weight of 220,000, with two dissimilar sub-units of molecular weights 29,000 and 26,500, corresponding to an α4β4 composition. The enzyme is specific for protocatechuate, with a Km of 1.75×10-5 M and maximum activity at pH 9.2. Metal removal and replacement studies indicate that the enzyme contains complexed Fe3+ which is required for activity. Direct atomic absorption analysis gave 1.3–1.5 g atoms Fe3+ per mole of isolated enzyme, but correction for metal-deficient proteins suggests that the value is close to 2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...