Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
  • Chemistry  (1)
  • cdc genes  (1)
  • Brazil
Material
Years
Year
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 4 (1981), S. 205-214 
    ISSN: 1432-0983
    Keywords: Cellcycle ; Gl period ; cdc genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Here we report the isolation of several new temperature-sensitive mutations which cause cells of the yeast Saccharomyces cerevisiae to arrest in the G1 period of the cell cycle. Four different selection schemes were employed. The cell division cycle (cdc) mutations define five new complementation groups. At non-permissive temperatures, strains bearing these new cdc mutations arrested in G1 within one cell division cycle. By order-of-function mapping, cells of each population were found to be arrested at “start”, the regulatory point in the G1 period of yeast. Mutations were grouped into two categories by the abilities of mutant strains to continue extensive macromolecular synthesis and to conjugate with cells of the opposite mating type. For strains with mutations in one category, shift to the non-permissive temperature caused an abrupt decrease in the rates of labelling of protein and RNA, and rendered cells unable to mate efficiently. For strains with mutations in the second category, cells continued to grow and mating ability was not significantly impaired. Each selection scheme was also designed to isolate mutations which specifically affect the ability of cells to reinitiate the cell cycle from stationary phase. This was done to test the hypothesis that stationary phase cells are in a unique developmental state referred to as G0. No mutations specific for resumption of growth from stationary phase were isolated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0933-5137
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: High Temperature Fatigue of the Precipitation Hardened Alloy AlCuMnZr (2219) - A Study of the MicrostructureThe creep resistant alloy AlCuMnZr (age-hardened) was subjected to simultaneous fatigue and annealing (at 300°C). This condition (high temperature fatigue) is often found under operational conditions, e.g. in cylinder heads. The material was then studied by means of mechanical testing (hardness measurements) and optical and electron microscopy. It is shown by microscopy that the microstructure is inhomogeneous: Band-like regions are formed in which the phase transformation Θ′ → Θ has occurred. Coarsening of the precipitates is somewhat accelerated in the matrix due to fatigue. The results will be discussed on grounds of the literature and the existing theories.
    Notes: Die warmfeste Legierung AlCuMnZr (voll ausgehärtet) wird gleichzeitig einer Dauerschwingbelastung sowie einer Temperaturerhöhung (300 °C) unterworfen. Diese Beanspruchungskombination (Hochtemperatur-Ermüdung) tritt in der Praxis vielfach auf, u.a. in Zylinder-köpfen. Der Werkstoff wird anschließend mechanisch (Härtemessungen) sowie licht- und elektronenmikroskopisch untersucht. Die Mikroskopie erhellt die ausgeprägte Inhomogenität des Verformungsgefüges, das aus schmalen bänderförmigen Bereichen besteht, in denen die Phasentransformation Θ′ → Θ stattgefunden hat. Diese Bänder umschließen das Θ′-gehärtete Grundgefüge. In letzterem hat die Ermüdung das Teilchenwachstum im Vergleich zu einer Auslagerung ohne Belastung etwas beschleunigt. Die Ergebnisse werden im Lichte der vorhandenen Literatur und Theorien diskutiert.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...