Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Diabetic retinopathy ; glucose ; vessel calibre ; fluorescence angiography ; autoregulation ; cats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The retinal microcirculation of anaesthetised normal cats was studied during hyperglycaemia (15 to 55 mmol/l) induced by intravenous infusion of glucose, using high speed cine fluorescence angiography. Saline (0.150 mmol/l) was infused as a control for the volume effect of glucose solution and equiosmolar mannitol was infused as a control for the osmotic effect. The mean retinal arteriolar inflow rate increased from 34±1 mm/sec to 41±4 mm/sec during glucose infusion, and from 46±1 mm/sec to 56±3 mm/sec during mannitol infusion. The blood pressure similarly increased from 105±5 mmHg to 125±2 mmHg during glucose infusion and from 110 ±7 mmHg to 129±1 mmHg during mannitol infusion. During mannitol infusion the increased inflow was accompanied by a reduction in the arteriolar width so that the volume flow remained unchanged. During glucose infusion this constriction did not occur, resulting in a significantly increased volume of retinal blood flow (9±1 μl/min to 12±1 μl/min).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 20 (1982), S. 241-244 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A simplified approximation method for the treatment of dead-end and high conversion polymerization kinetics is presented. The method is based on the treatment of dead-end polymerization first described by Tobolsky. In appropriate circumstances, by contrast with Tobolsky's method, this method provides measurements of kd and kp/kt1/2 without recourse to the measurement of the monomer conversion at infinite time.Kinetic studies of free radical polymerizations are normally confined to measurements of initial rates. At low conversions the predictions of the general mechanism for chain-growth polymerization involving initiation, propagation, and termination steps are generally obeyed. Thus the polymerization rate should be first order in the vinyl monomer and half-order in the initiator concentrations.At high conversions, however, large deviations which can be ascribed to various effects can occur; for example, (1) the effect of the increasing viscosity of the polymerization medium on the termination rate constant kt, and possibly also on the propagation rate constant kp, which have been considered by North1 and Cardenas and O'Driscoll,2 or (2) depletion of the initiator as the polymerization progresses. This depletion will occur in all polymerizations but its significance will depend on the magnitude of the rate constant for initiator decomposition (kd) and the period of polymerization. Appropriate conditions will lead to limiting monomer conversion even after infinite polymerization time; this phenomenon has been called dead-end polymerization by Tobolsky.3Free radical polymerizations to high conversion are particularly important in the industrial context when initial kinetics are obviously inadequate. Suitable treatment of the conversion/time relationship is highly desirable.Senogles and Woolf4 have examined the polymerization of n-lauryl methacrylate at 60°C with 2-azobisisobutyronitrile as initiator under dead-end conditions.Here we propose a modification of Tobolsky's treatment of such polymerizations by using an approximation for the exponential decay in the initiator concentration. This method permits easy manipulation of the experimental data and the estimation of values for the kinetic parameters in favorable circumstances without recourse to the measurement of the conversion at infinite time or the evaluation of complicated functions of the monomer conversion. The method thus allows the duration of the laboratory experimentation to be significantly shortened and the complexity of the subsequent data analysis to be considerably reduced.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...