Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 20 (1984), S. 195-200 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A theoretical consideration is presented of the comparative efficiency of carbon conversion of glucose by the Embden-Meyerhof-Parnas (EMP) and the oxidative hexosemonophosphate (HMP) pathways. As a result it is shown that maximum carbon conversion, that is 89%, is possible when glucose is assimilated via the EMP pathway. This value is diminished in proportion to the participation of the HMP pathway in carbon assimilation and is halved when glucose is incorporated entirely via this pathway. If NADPH is included as a source of energy, glucose may behave both as an excess carbon and an excess energy substrate, the latter being the case when greater portions of the HMP pathway operate, and the extent of this is in turn dependent on the P/O quotient. If NADPH cannot be used for ATP synthesis, glucose remains an excess carbon substrate throughout, although when the HMP pathway accounts for more than 26% of glucose assimilation an increasing excess of reduction equivalents is produced. These results are interpreted in terms of mixed-substrate utilization for improving growth yield when glucose is to be used as the excess carbon component.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 136 (1983), S. 203-208 
    ISSN: 1432-072X
    Keywords: Maximum growth yield ; Mixed substrate utilization ; Glucose ; Formate ; Transient-state cultivation ; Hansenula polymorpha
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The experimentally determined growth yield on glucose under aerobic conditions is approximately 0.5 g/g, but on the basis of the carbon content a value of 0.71 g/g should be the upper limit if carbon conversion is improved by the use of an additional energy source. This assumption was investigated with the methylotrophic yeast Hansenula polymorpha MH 20. Formate served as an additional energy source. The growth yield experiments were performed with a transient-state fermentation technique in which formate was fed via an increasing concentration gradient to a culture growing continuously on glucose. As a result the growth yield on glucose was improve, the extent was dependent on the formate feeding rate, i.e. the slope of this formate gradient. The predicted maximum growth yield of 0.7 g/g was obtained at a slope of the formate gradient of 0.21 g/l·h at a glucose concentration of about 1 g/l. Steeper gradients did not further improve this value, but rather impaired the growth yield due to the appearence of a high residual formate concentration in the fermentation medium. The yield patterns are influenced by the culture pH, a value of at least 4.8 is necessary to achieve the maximum growth yield on glucose. At lower pH formate became increasingly toxic. The ratio of formate to glucose necessary to obtain the maximum yield coefficient was 1...1.6:1 (in grams). On the basis of the energy content of formate a ratio of 1.2...1 (P/O=2) was calculated to substitute the part of glucose which is endoxidized for energy generation. Deviations from this value are explained in terms of the manner of uptake and uncoupling property of formic acid/formate and the existence of a second, formate-“wasting” enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...