Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biological physics 6 (1978), S. 161-175 
    ISSN: 1573-0689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Conductivity and capacitance titrations yield minima for the chlorpromazine hydrochloride-heparin interaction, confirming clinical suspicions of its occurrence. The effective dosage of heparin thus is reduced if administered in conjunction with chlorpromazine. The interaction is interpreted as charge transfer complex formation, occurring as an (electrode) surface reaction. It is suggested that the charge transfer complexing capability of heparin preparations, as evidenced by conductance and/or capacitance changes, evaluated against a well defined donor such as chlorpromazine hydrochloride, may be adapted as a more precise method of measuring heparin activity than coagulation time determinations. Phenytoin and chlorpromazine likewise yield conductance and capacitance minima; voltammetry indicates new peaks at +250mV and −300mV vers.SCE supporting the suggestions that an uncharged 1∶1 complex is being formed, again in a type of surface reaction. Phenytoin and lignocain form a precipitate at 0.002 equimolar; in conductance and capacitance titrations phenytoin behaves as a weak electron donor against iodine though as a weak acceptor against lignocain. Lignocain and chlorpromazine conductance and capacitance titrations using gold electrodes fail to show any evidence for their previously reported interaction on Pt/Pt electrodes. Voltammetry on Pt/Pt electrodes indicates 2 new peaks at zero and at −750mV vers.SCE. It is thought that these two compounds interact only on catalytically highly active surfaces, where they form a weak surface charge transfer complex. Adrenalin, in conductance and capacitance titrations, behaves amphoteric, i.e. as an electron acceptor against the strong donor chlorpromazine and as a donor against the strong acceptor tetramethyl-p-phenylenediamine. Voltammograms of the above listed interactions are interpreted as of the ECE type exhibiting mainly irreversible behaviour.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...