Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 30 (1979), S. 322-340 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Stress corrosion cracking on austenitic chromium nickel steels during active corrosion in chloride containing electrolytesAustenitic stainless steels may suffer from stress corrosion cracking (SCC) in chloride containing environments not only in the passive state of the materials and at elevated temperatures, but also under the conditions of active corrosion at ambient temperatures. This type of active SCC was investigated for 18/8 CrNi-steel in sulphuric acid-sodium chloride solutions by potentiostatically controlled experiments with stressed specimens. Critical potential ranges of susceptibility to SCC were evaluated. Comparison with potentiodynamically measured current-potential-curves shows that these critical potential ranges of SCC are identical with the potential ranges of active dissolution of unstressed specimens.Also in boiling 42% MgCl2, active SCC is observed in a narrow potential range more negative than the critical limiting potential of passive SCC. This range becomes more narrow by addition of Mo, but is extended by Ni. Incoloy 800 with about 32 wt.-% Ni shows exclusively active behaviour in the potential range interesting for testing the material in 42% MgCl2.Active SCC is at last caused by the formation of an incomplete protecting layer of adsorbed chloride ions which allows local differences of anodic dissolution, hereby in the presence of mechanical stresses making SCC failures possible. At potentials sufficiently negative, the thickness of the adsorption layer can increase and a macroscopic salt-layer is formed. The chemical composition of such a layer, formed in magnesium chloride, was investigated. The layer consists nearly exclusively of nickel chloride.
    Notes: Nichtrostende austenitische Stähle erfahren in chloridhaltigen Angriffsmitteln Spannungsrißkorrosion nicht nur im passiven Zustand bei erhöhter Temperature, sondern auch im Zustand der aktiven Korrosion bei Umgebungstemperatur. Diese aktive Spannungsrißkorrosion wurde für 18/8 Chrom-Nickel-Stähle in schwefelsauren Natriumchlorid-Lösungen durch potentionstatische Halteversuche mit gespannten Proben untersucht, wobei kritische Potentiale der Spannungsrißkorrosion ermittelt wurden. Ein Vergleich mit potentiodynamisch gemessenen Strom-Potential-Kurven zeigt, daß diese kritischen Potentialbereiche der Spannungsrißkorrosion mit den Potentialbereichen der aktiven Auflösung des Stahles bei Abwesenheit mechanischer Spannungen identisch sind.Auch in siedender 42%iger Magnesiumchlorid-Lösung erfolgt aktive Spannungsrißkorrosion in einem schmalen Potentialbereich bei Potentialen, die negativer sind als das kritische Grenzpotential der Spannungsrißkorrosion im passiven Zustand. Durch Zusatz von Molybdän wird der Potentialbereich der aktiven Spannungsrißkorrosion eingeengt, durch Nickelzusätze erweitert. Werkstoff Incoloy 800 mit 32 Gew.-% Nikkel ist in dem bei der Prüfung in 42% iger Magnesiumchlorid- Lösung interessierenden Potentialbereich ausschließlich aktiv, wird jedoch in diesem Zustand nur schwach durch Spannungsrißkorrosion angegriffen.Ursache der Spannungsrißkorrosion im aktiven Zustand ist die Ausbildung einer unvollständig schützenden Schicht von adsorbierten Chloridionen, die örtliche Unterschiede des anodischen Verhaltens ermöglicht. Bei hinreichend negativen Potentialen kann diese Adsorbtionsschicht ein Dickenwachstum erfahren, so daß makroskopische Salzdeckschichten entstehen. Die chemische Zusammensetzung einer solchen, in Magnesiumchlorid-Lösung gebildeten Deckschicht wurde untersucht, sie besteht praktisch ausschließlich aus Nickelchlorid.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...