Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • (-)-DPI  (1)
  • Channel-associated binding site  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    European biophysics journal 22 (1994), S. 437-446 
    ISSN: 1432-1017
    Schlagwort(e): Single cardiac K+ channels ; Gating ; Quinidine ; Verapamil ; Channel-associated binding site ; Heart muscle
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Physik
    Notizen: Abstract Elementary K+ currents through cardiac outwardly rectifying K+ channels were recorded in insideout patches excised from cultured neonatal rat cardiocytes at 19 °C and at 9 °C. By studying the inhibitory effects of tetraethylammonium (TEA), quinidine and verapamil, the properties of this novel type of K+ channel were further characterized. Internal TEA (50 mmol/1) evoked a reversible decline of iunit to 62.7 + 2.7% of control (at −7 mV), without significant changes of open state kinetics, indicating a blockade of the open K+ pore with kinetics too fast to be resolvable at 1 kHz. This TEA blockade was e-fold voltage-dependent, with a decrease of the apparent KD( TEA) from 102 mmol/1 at −37 mV to 65 mmol/1 at +33 mV and, furthermore, became accentuated on lowering the internal K+ concentration. Thus, TEA competes with the permeant K+ for a site located in some distance from the cytoplasmic margin, within the K+ pore. Quinidine (100 μmol/l), like verapamil (40 μmol/1) reversibly depressed iunit to about 80% of the control value (at −7 mV), but drug-induced fast flicker blockade proved voltage-insensitive between −27 mV and +23 mV These drugs gain access to a portion of the pore distinct from the TEA binding site whose occupancy by drugs likewise blocks K+ permeation. Both drugs showed a greater potency to depress Po which, with quinidine,decreased reversibly to38.6 ± 11.1% (at −7 mV) and, with verapamil to 24.9 ± 9.1%(at −7 mV), mainly by an increase of the prolonged closed state (C,). This alteration of the gating process also includes a sometimes dramatic shortening of the open state. Most probably, cardiac K(outw.-rect.) +K+ outw.-rect. channels possess a second drug-sensitive site whose occupancy by quinidine or verapamil may directly or allosterically stabilize their non-conducting configuration.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    The journal of membrane biology 122 (1991), S. 267-278 
    ISSN: 1432-1424
    Schlagwort(e): single cardiac Na+ channels ; open-state kinetics ; drug-induced blockade ; (-)-DPI
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Summary Elementary Na+ currents were recorded at 9°C in inside-out patches from cultured neonatal rat heart myocytes. In characterizing the sensitivity of cooled, slowly inactivating cardiac Na+ channels to several antiarrhythmic drugs including propafenone, lidocaine and quinidine, the study aimed to define the role of Na+ inactivation for open channel blockade. In concentrations (1–10 μmol/liter) effective to depressNP o significantly, propafenone completely failed to influence the open state of slowly inactivating Na+ channels. With 1 μmol/liter, τopen changed insignificantly to 96±7% of the control. Even a small number of ultralong openings of 6 msec or longer exceeding τopen of the whole ensemble several-fold and attaining τopen (at −45 mV) in cooled, (-)-DPI-modified, noninactivating Na+ channels proved to be drug resistant and could not be flicker-blocked by 10 μmol/liter propafenone. The same drug concentration induced in(-)-DPI-modified Na+ channels a discrete block with association and dissociation rate constants of 16.1 ± 5.3 × 106 mol−1 sec−1 and 675 ± 25 sec−1, respectively. Quinidine, known to have a considerable affinity for activated Na+ channels, in lower concentrations (5 μmol/liter) left τopen unchanged or reduced, in higher concentrations (10 μmol/liter) τopen only slightly to 81% of the predrug value whereasNP o declined to 30%, but repetitive blocking events during the conducting state could never be observed. Basically the same drug resistance of the open state was seen in cardiac Na+ channels whose open-state kinetics had been modulated by the cytoplasmic presence of F− ions. But in this case, propafenone reduced reopening and selectively abolished a long-lasting open state. This drug action is unlikely related to the inhibitory effect onNP o since hyperpolarization and the accompanying block attenuation did not restore the channel kinetics. It is concluded that cardiac Na+ channels cannot be flicker-blocked by antiarrhythmic drugs unless Na+ inactivation is removed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...