Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 42 (1986), S. 344-350 
    ISSN: 1420-9071
    Keywords: Soil acidification ; acid deposition ; terrestrial ecosystems ; H+ budget ; silicate weathering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Conclusions The total proton load found in these ecosystems exceeds by far the known rates of buffering in soils by silicate weathering and release of basic cations (see above). Under the present proton load most forest soils will therefore acidify and besides losses of nutrients the occurrence of possible toxic ions in the soil unavoidable (Al-buffer range)20, 21. The proportion of the total proton load of the soil that is represented by the internal production emphasizes the importance of acid deposition as main cause of soil acidification and destabilization of forest ecosystems under Central European conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Fagus silvatica L. ; wet deposition ; N-uptake ; 15N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Uptake of NH4 and NO3 by above ground parts of beech trees was studied by spraying young trees with varying concentrations of 15N labeled solutions, different N-forms, and spray regimes over four months. Following treatment, the trees were harvested and analyzed for 15N and major element content. Throughfall was collected and analyzed in addition in order to study the interaction between nitrogen uptake and cation leaching. Significant amounts of N were taken up by the above ground plant parts in all treatments as indicated by 15N analysis of the trees as well as by throughfall measurements. NH4 uptake exceeded the uptake of NO3 if applied in the same concentration. Uptake of N increased linearly with increasing concentration in the spray solution and with spray intensity. The uptaken N was translocated within the plant. The contribution of N from uptake by above ground parts to the total N content of tissues differed and reached a maximum level of 6% in leaves. No effect of above ground N uptake on the total N content of tissues was found. Calculating atmospheric N inputs to forest ecosystems by throughfall measurements may underestimate the actual N input.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 85 (1995), S. 63-76 
    ISSN: 1573-2932
    Keywords: Forest damage ; soil acidity ; N-saturation ; acid deposition ; root growth ; drought
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A survey of leaf and needle losses of European forests in 1993 revealed that 23% of the total forested area had defoliation of more than 25%. The focus of this defoliation is in Central Europe, namely in Poland, Slowakia, Czech Republic, and Germany. The annual surveys of leaf losses and discoloration indicated only small changes during the last years for the coniferous forests in Germany. However, the increasing leaf losses of oak and beech during the last years were alarming. Evaluating the potential relation between air pollutant deposition, soil changes and forest damage, we focus here on the recent changes in deposition and soil conditions, and their implication on tree root development and drought susceptability of trees. While deposition of SO4 2−, H+ and Ca2+ in many Central European forests decreased in the last decade, input of NH4 + and NO3 − remained high or even increased. The H+ load of many forest soils today is thus still high compared to weathering rates, but the proportion of the H+ load resulting from turnover of deposited N has increased. Recent effects of changing depositions on acid forest soils were: depletion of soil Al-pools, release of formerly stored soil SO4 2−, accumulation of N in soil organic matter, increasing N availability to trees and decreasing concentration of Ca2+ in the soil solution. We hypothesise that soil acidification and increased N availability will decrease the fine root biomass of trees and shift the rooting zone to upper soil layers. Increased above ground growth, observed in many areas of Europe, will furthermore decrease the root/shoot ratio. This development will finally cause increased drought susceptability of trees and is thus of destabilizing nature. The proposed chain of events might be overlapped by other effects of air pollutants on forest ecosystems, namely direct effects of gases on leaves, nutritional inbalances, and interactions with pests.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...